204
Views
2
CrossRef citations to date
0
Altmetric
Articles

A screening method to analyse the sensitivity of a lower limb multibody kinematic model

ORCID Icon, & ORCID Icon
Pages 925-935 | Received 28 Dec 2018, Accepted 02 Apr 2019, Published online: 19 Apr 2019

References

  • Ackland D, Lin YC, Pandy M. 2012. Sensitivity of model predictions of muscle function to changes in moment arms and muscle-tendon properties: a Monte-Carlo analysis. J Biomech. 45(8):1463–1471.
  • Baldwin M, Laz P, Stowe J, Rullkoetter P. 2009. Efficient probabilistic representation of tibiofemoral soft tissue constraint. Comput Methods Biomech Biomed Engin. 12(6):651–659.
  • Begon M, Andersen M, Dumas R. 2018. Multibody kinematics optimization for the estimation of upper and lower limb human joint kinematics: a systematized methodological. Review. J Biomech Eng. 140(3):030801.
  • Bosmans L, Valente G, Wesseling M, Van Campen A, De Groote F, De Schutter J, Jonkers I. 2015. Sensitivity of predicted muscle forces during gait to anatomical variability in musculotendon geometry. J Biomech. 48(10):2116–2123.
  • Brito da Luz S, Modenese L, Sancisi N, Mills P, Kennedy B, Beck B, Lloyd D. 2017. Feasibility of using MRIs to create subject-specific parallel-mechanism joint models. J Biomech. 53:45–55.
  • Camomilla V, Dumas R, Cappozzo A. 2017. Human movement analysis: the soft tissue artefact issue. J Biomech. 62:1–4.
  • Campolongo F, Cariboni J, Saltelli A. 2007. An effective screening design for sensitivity analysis of large models. Environ Model Softw. 22(10):1509–1518.
  • Campolongo F, Saltelli A, Cariboni J. 2011. From screening to quantitative sensitivity analysis: a unified approach. Comput Phys Commun. 182(4):978–988.
  • Carbone V, van der Krogt M, Koopman H, Verdonschot N. 2012. Sensitivity of subject-specific models to errors in musculo-skeletal geometry. J Biomech. 45(14):2476–2480.
  • Charbonnier C, Chagué S, Kolo F, Duthon V, Menetrey J. 2017. Multi-body optimization with subject-specific knee models: performance at high knee flexion angles. Comput Methods Biomech Biomed Engin. 20:1571–1579.
  • Clément J, Dumas R, Hagemeister N, de Guise J. 2015. Soft tissue artifact compensation in knee kinematics by multi-body optimization: performance of subject-specific knee joint models. J Biomech. 48(14):3796–3802.
  • De Groote F, Van Campen A, Jonkers I, De Schutter J. 2010. Sensitivity of dynamic simulations of gait and dynamometer experiments to hill muscle model parameters of knee flexors and extensors. J Biomech. 43(10):1876–1883.
  • Di Gregorio R, Parenti-Castelli V, O’Connor J, Leardini A. 2007. Mathematical models of passive motion at the human ankle joint by equivalent spatial parallel mechanisms. Med Bio Eng Comput. 45:305–313.
  • Duprey S, Cheze L, Dumas R. 2010. Influence of joint constraints on lower limb kinematics estimation from skin markers using global optimization. J Biomech. 43(14):2858–2862.
  • El Habachi A, Moissenet F, Duprey S, Cheze L, Dumas R. 2015. Global sensitivity analysis of the joint kinematics during gait to the parameters of a lower limb multi-body model. Med Biol Eng Comput. 53(7):655–667.
  • Feikes JD, O'Connor JJ, Zavatsky AB. 2003. A constraint-based approach to modelling the mobility of the human knee joint. J Biomech. 36(1):125–129.
  • Gaffney B, Christiansen C, Murray A, Myers C, Laz P, Davidson B. 2017. The effects of prosthesis inertial parameters on inverse dynamics: a probabilistic analysis. J Verif Valid Uncert. 2(3):031003.
  • Gasparutto X, Sancisi N, Jacquelin E, Parenti-Castelli V, Dumas R. 2015. Validation of a multi-body optimization with knee kinematic models including ligament constraints. J Biomech. 48(6):1141–1146.
  • Lamberto G, Martelli S, Cappozzo A, Mazzà C. 2017. To what extent is joint and muscle mechanics predicted by musculoskeletal models sensitive to soft tissue artefacts? J Biomech. 62:68–76.
  • Langenderfer J, Laz P, Petrella A, Rullkoetter P. 2008. An efficient probabilistic methodology for incorporating uncertainty in body segment parameters and anatomical landmarks in joint loadings estimated from inverse dynamics. J Biomech Eng. 130(1):014502.
  • Leardini A, Belvedere C, Nardini F, Sancisi N, Conconi M, Parenti-Castelli V. 2017. Kinematic models of lower limb joints for musculo-skeletal modelling and optimization in gait analysis. J Biomech. 62:77–86.
  • Martelli S, Valente G, Viceconti M, Taddei F. 2015. Sensitivity of a subject-specific musculoskeletal model to the uncertainties on the joint axes location. Comput Methods Biomech Biomed Engin. 18:1555–1563.
  • McKay M, Beckman R, Conover W. 1979. Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics. 21:239–245.
  • Morris M. 1991. Factorial sampling plans for preliminary computational experiments. Technometrics. 33(2):161–174.
  • Myers C, Laz P, Shelburne K, Davidson B. 2015. A probabilistic approach to quantify the impact of uncertainty propagation in musculoskeletal simulations. Ann Biomed Eng. 43(5):1098–1111.
  • Navacchia A, Myers C, Rullkoetter P, Shelburne K. 2016. Prediction of in vivo knee joint loads using a global probabilistic analysis. J Biomech Eng. 138(3):031002.
  • Pal S, Langenderfer J, Stowe J, Laz P, Petrella A, Rullkoetter P. 2007. Probabilistic modeling of knee muscle moment arms: effects of methods, origin-insertion, and kinematic variability. Ann Biomed Eng. 35(9):1632–1642.
  • Pàmies-Vilà R, Font-Llagunes J, Cuadrado J, Alonso F. 2012. Analysis of different uncertainties in the inverse dynamic analysis of human gait. Mech Mach Theory. 58:153–164.
  • Redl C, Gfoehler M, Pandy M. 2007. Sensitivity of muscle force estimates to variations in muscle-tendon properties. Hum Mov Sci. 26(2):306–319.
  • Reinbolt J, Haftka R, Chmielewski T, Fregly B. 2007. Are patient-specific joint and inertial parameters necessary for accurate inverse dynamics analyses of gait? IEEE Trans Biomed Eng. 54(5):782–793.
  • Saltelli A, Chan K, Scott E. 2000. Sensitivity analysis. Chichester (UK): John Wiley & Sons, Ltd.
  • Saltelli A, Tarantola S, Campolongo F, Ratto M. 2004. Sensitivity analysis in pratice. Chichester (UK): John Wiley & Sons, Ltd.
  • Sancisi N, Gasparutto X, Parenti-Castelli V, Dumas R. 2017. A multi-body optimization framework with a knee kinematic model including articular contacts and ligaments. Meccanica. 52(3):695–711.
  • Sancisi N, Parenti-Castelli V. 2011. A new kinematic model of the passive motion of the knee inclusive of the patella. J Mechanisms Robotics. 3(4):041003.
  • Scovil C, Ronsky J. 2006. Sensitivity of a hill-based muscle model to perturbations in model parameters. J Biomech. 39(11):2055–2063.
  • Silva M, Ambrósio J. 2004. Sensitivity of the results produced by the inverse dynamic analysis of a human stride to perturbed input data. Gait Posture. 19:35–49.
  • Smale K, Conconi M, Sancisi N, Krogsgaard M, Alkjaer T, Parenti-Castelli V, Benoit D. 2019. Effect of implementing magnetic resonance imaging for patient-specific opensim models on lower-body kinematics and knee ligament lengths. J Biomech. 83:9–15.
  • Smith C, Lenhart R, Kaiser J, Vignos M, Thelen D. 2016. Influence of ligament properties on tibiofemoral mechanics in walking. J Knee Surg. 29(2):99–106.
  • Valente G, Pitto L, Stagni R, Taddei F. 2015. Effect of lower-limb joint models on subject-specific musculoskeletal models and simulations of daily motor activities. J Biomech. 48:198–205.
  • Valente G, Pitto L, Testi D, Seth A, Delp S, Stagni R, Viceconti M, Taddei F. 2014. Are subject-specific musculoskeletal models robust to the uncertainties in parameter identification? PLoS One. 9(11):e112625.
  • Wesseling M, de Groote F, Jonkers I. 2014. The effect of perturbing body segment parameters on calculated joint moments and muscle forces during gait. J Biomech. 47(2):596–601.
  • Wu G, Siegler S, Allard P, Kirtley C, Leardini A, Rosenbaum D, Whittle M, D’Lima DD, Cristofolini L, Witte H, et al. 2002. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine. Journal of Biomechanics. 35(4):543–548.
  • Xiao M, Higginson J. 2010. Sensitivity of estimated muscle force in forward simulation of normal walking. J Appl Biomech. 26(2):142–149.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.