747
Views
23
CrossRef citations to date
0
Altmetric
Articles

A round-robin finite element analysis of human femur mechanics between seven participating laboratories with experimental validation

ORCID Icon, ORCID Icon, , ORCID Icon, , , ORCID Icon, ORCID Icon, , ORCID Icon, & ORCID Icon show all
Pages 1020-1031 | Received 17 Oct 2018, Accepted 02 May 2019, Published online: 13 May 2019

References

  • ASTM F2996-13 2013. Standard practice for finite element analysis (FEA) of non-modular metallic orthopaedic hip femoral stems. West Conshohocken, PA: ASTM International.
  • Behrens BA, Nolte I, Wefstaedt P, Stukenborg-Colsman C, Bouguecha A. 2009. Numerical investigations on the strain-adaptive bone remodelling in the periprosthetic femur: influence of the boundary conditions. Biomed Eng Online. 8(1):7.
  • Chen G, Wu FY, Liu ZC, Yang K, Cui F. 2015. Comparisons of node-based and element-based approaches of assigning bone material properties onto subject-specific finite element models. Med Eng Phys. 37(8):808–812.
  • Cong A, Buijs JO, Dragomir-Daescu D. 2011. In situ parameter identification of optimal density-elastic modulus relationships in subject-specific finite element models of the proximal femur. Med Eng Phys. 33(2):164–173.
  • Dall’Ara E, Luisier B, Schmidt R, Kainberger F, Zysset P, Pahr D. 2013. A nonlinear QCT-based finite element model validation study for the human femur tested in two configurations in vitro. Bone. 52:27–38.
  • Dreischarf M, Zander T, Shirazi-Adl A, Puttlitz CM, Adam CJ, Chen CS, Goel VK, Kiapour A, Kim YH, Labus KM, et al. 2014. Comparison of eight published static finite element models of the intact lumbar spine: predictive power of models improves when combined together. J Biomech. 47(8):1757–1766.
  • Eberle S, Gottlinger M, Augat P. 2013a. An investigation to determine if a single validated density-elasticity relationship can be used for subject specific finite element analyses of human long bones. Med Eng Phys. 35(7):875–883.
  • Eberle S, Gottlinger M, Augat P. 2013b. Individual density-elasticity relationships improve accuracy of subject-specific finite element models of human femurs. J Biomech. 46(13):2152–2157.
  • Fan X, Chen Z, Jin Z, Zhang Q, Zhang X, Peng Y. 2018. Parametric study of patient-specific femoral locking plates based on a combined musculoskeletal multibody dynamics and finite element modeling. Proc Inst Mech Eng H. 232(2):114–126.
  • Fregly BJ, Besier TF, Lloyd DG, Delp SL, Banks SA, Pandy MG, D’Lima DD. 2012. Grand challenge competition to predict in vivo knee loads. J Orthop Res. 30(4):503–513.
  • Hambli R, Bettamer A, Allaoui S. 2012. Finite element prediction of proximal femur fracture pattern based on orthotropic behaviour law coupled to quasi-brittle damage. Med Eng Phys. 34(2):202–210.
  • Helgason B, Gilchrist S, Ariza O, Vogt P, Enns-Bray W, Widmer RP, Fitze T, Palsson H, Pauchard Y, Guy P, et al. 2016. The influence of the modulus-density relationship and the material mapping method on the simulated mechanical response of the proximal femur in side-ways fall loading configuration. Med Eng Phys. 38(7):679–689.
  • Helgason B, Perilli E, Schileo E, Taddei F, Brynjolfsson S, Viceconti M. 2008. Mathematical relationships between bone density and mechanical properties: a literature review. Clin Biomech. 23(2):135–146.
  • Holzer A, Schroder C, Woiczinski M, Sadoghi P, Scharpf A, Heimkes B, Jansson V. 2013. Subject-specific finite element simulation of the human femur considering inhomogeneous material properties: a straightforward method and convergence study. Comput Methods Programs Biomed. 110(1):82–88.
  • Hu P, Wu T, Wang HZ, Qi XZ, Yao J, Cheng XD, Chen W, Zhang YZ. 2017. Influence of different boundary conditions in finite element analysis on pelvic biomechanical load transmission. Orthop Surg. 9(1):115–122.
  • ISO/IEC 17025 2017. General requirements for the competence of testing and calibration laboratories. International Organization for Standardization 2017.
  • Kluess D, Souffrant R, Mittelmeier W, Wree A, Schmitz KP, Bader R. 2009. A convenient approach for finite-element-analyses of orthopaedic implants in bone contact: modeling and experimental validation. Comput Methods Programs Biomed. 95(1):23–30.
  • Luisier B, Dall’Ara E, Pahr DH. 2014. Orthotropic HR-pQCT-based FE models improve strength predictions for stance but not for side-way fall loading compared to isotropic QCT-based FE models of human femurs. J Mech Behav Biomed Mater. 32:287–299.
  • Mirzaali MJ, Schwiedrzik JJ, Thaiwichai S, Best JP, Michler J, Zysset PK, Wolfram U. 2016. Mechanical properties of cortical bone and their relationships with age, gender, composition and microindentation properties in the elderly. Bone. 93:196–211.
  • Morgan EF, Bayraktar HH, Keaveny TM. 2003. Trabecular bone modulus-density relationships depend on anatomic site. J Biomech. 36(7):897–904.
  • Peng L, Bai J, Zeng X, Zhou Y. 2006. Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions. Med Eng Phys. 28(3):227–233.
  • Rossman T, Kushvaha V, Dragomir-Daescu D. 2016. QCT/FEA predictions of femoral stiffness are strongly affected by boundary condition modeling. Comput Methods Biomech Biomed Eng. 19(2):208–216.
  • Ruegsegger P, Kalender WA. 1993. A phantom for standardization and quality control in peripheral bone measurements by PQCT and DXA. Phys Med Biol. 38:1963–1970.
  • Schileo E, Taddei F, Malandrino A, Cristofolini L, Viceconti M. 2007. Subject-specific finite element models can accurately predict strain levels in long bones. J Biomech. 40(13):2982–2989.
  • Soodmand E, Kluess D, Varady PA, Cichon R, Schwarze M, Gehweiler D, Niemeyer F, Pahr D, Woiczinski M. 2018. Interlaboratory comparison of femur surface reconstruction from CT data compared to reference optical 3D scan. Biomed Eng Online. 17:29.
  • Sternheim A, Giladi O, Gortzak Y, Drexler M, Salai M, Trabelsi N, Milgrom C, Yosibash Z. 2018. Pathological fracture risk assessment in patients with femoral metastases using CT-based finite element methods. A retrospective clinical study. Bone. 110:215–220.
  • Taddei F, Schileo E, Helgason B, Cristofolini L, Viceconti M. 2007. The material mapping strategy influences the accuracy of CT-based finite element models of bones: an evaluation against experimental measurements. Med Eng Phys. 29(9):973–979.
  • Taylor M, Prendergast PJ. 2015. Four decades of finite element analysis of orthopaedic devices: where are we now and what are the opportunities? J Biomech. 48(5):767–778.
  • Trabelsi N, Yosibash Z, Wutte C, Augat P, Eberle S. 2011. Patient-specific finite element analysis of the human femur–a double-blinded biomechanical validation. J Biomech. 44(9):1666–1672.
  • Waanders D, Janssen D, Mann KA, Verdonschot N. 2011. Morphology based cohesive zone modeling of the cement-bone interface from postmortem retrievals. J Mech Behav Biomed Mater. 4(7):1492–1503.
  • Weinans H, Huiskes R, Grootenboer HJ. 1994. Effects of fit and bonding characteristics of femoral stems on adaptive bone remodeling. J Biomech Eng. 116(4):393–400.
  • Wirtz DC, Schiffers N, Pandorf T, Radermacher K, Weichert D, Forst R. 2000. Critical evaluation of known bone material properties to realize anisotropic FE-simulation of the proximal femur. J Biomech. 33(10):1325–1330.
  • Yosibash Z, Plitman MR, Dahan G, Trabelsi N, Amir G, Milgrom C. 2014. Predicting the stiffness and strength of human femurs with real metastatic tumors. Bone. 69:180–190.
  • Zysset P, Pahr D, Engelke K, Genant HK, McClung MR, Kendler DL, Recknor C, Kinzl M, Schwiedrzik J, Museyko O, et al. 2015. Comparison of proximal femur and vertebral body strength improvements in the FREEDOM trial using an alternative finite element methodology. Bone. 81:122–130.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.