194
Views
0
CrossRef citations to date
0
Altmetric
Articles

Numerical investigation of the role of osteopontin on the mechanical strength of biological composites

ORCID Icon
Pages 1186-1196 | Received 04 Feb 2019, Accepted 21 Jul 2019, Published online: 02 Aug 2019

References

  • Addison WN, Masica DL, Gray JJ, McKee MD. 2010. Phosphorylation-dependent inhibition of mineralization by osteopontin ASARM peptides is regulated by PHEX cleavage. J Bone Miner Res. 25(4):695–705.
  • Almora-Barrios N, Austen KF, de Leeuw NH. 2009. Density functional theory study of the binding of glycine, proline, and hydroxyproline to the hydroxyapatite (0001) and (011¯0) surfaces. Langmuir. 25(9):5018–5025.
  • Barenblatt GI. 1962. The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech. 7:55–129.
  • Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J. 1981. Interaction models for water in relation to protein hydration. In: Pullman B, editor. Intermolecular forces. Dordrecht (the Netherlands): D. Reidel Publishing Company. p. 331–342.
  • Buehler MJ. 2007. Molecular nanomechanics of nascent bone: fibrillar toughening by mineralization. Nanotechnology. 18(29):295102.
  • Butler WT. 1995. Structural and functional domains of osteopontin. Ann N Y Acad Sci. 760:6–11.
  • Chen X, Wang Q, Shen J, Pan H, Wu T. 2007. Adsorption of leucine-rich amelogenin protein on hydroxyapatite (001) surface through −COO− claws. J Phys Chem C. 111(3):1284–1290.
  • Corno M, Chiatti F, Pedone A, Ugliengo P. 2011. In silico study of hydroxyapatite and bioglass®: how computational science sheds light on biomaterials. In: Pignatello R, editor. Biomaterials – physics and chemistry. Rijeka (Croatia): InTech. p. 275–298.
  • Darden T, York D, Pedersen L. 1993. Particle mesh Ewald: an N⋅log(N) method for Ewald sums in large systems. J Chem Phys. 98(12):10089–10092.
  • De Falco P, Barbieri E, Pugno N, Gupta HS. 2017. Staggered fibrils and damageable interfaces lead concurrently and independently to hysteretic energy absorption and inhomogeneous strain fields in cyclically loaded antler bone. ACS Biomater Sci Eng. 3(11):2779–2787.
  • Denhardt DT, Guo X. 1993. Osteopontin: a protein with diverse functions. FASEB J. 7(15):1475–1482.
  • Dugdale DS. 1960. Yielding of steel sheets containing slits. J Mech Phys Solids. 8(2):100–104.
  • Dunlop JWC, Fratzl P. 2010. Biological composites. Annu Rev Mater Res. 40:1–24.
  • Ekiz OO, Dericioglu AF, Kakisawa H. 2009. An efficient hybrid conventional method to fabricate nacre-like bulk nano-laminar composites. Mater Sci Eng C. 29(6):2050–2054.
  • Espinosa HD, Juster AL, Latourte FJ, Loh OY, Gregoire D, Zavattieri PD. 2011. Tablet-level origin of toughening in abalone shells and translation to synthetic composite materials. Nat Commun. 2:173.
  • Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG. 1995. A smooth particle mesh Ewald method. J Chem Phys. 103(19):8577–8593.
  • Fantner GE, Adams J, Turner P, Thurner PJ, Fisher LW, Hansma PK. 2007. Nanoscale ion mediated networks in bone: osteopontin can repeatedly dissipate large amounts of energy. Nano Lett. 7(8):2491–2498.
  • Fantner GE, Hassenkam T, Kindt JH, Weaver JC, Birkedal H, Pechenik L, Cutroni JA, Cidade GAG, Stucky GD, Morse DE, Hansma PK. 2005. Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nat Mater. 4(8):612–616.
  • Foster BL, Ao M, Salmon CR, Chavez MB, Kolli TN, Tran AB, Chu EY, Kantovitz KR, Yadav M, Narisawa S, et al. 2018. Osteopontin regulates dentin and alveolar bone development and mineralization. Bone. 107:196–207.
  • Hambli R, Allaoui S. 2013. A robust 3D finite element simulation of human proximal femur progressive fracture under stance load with experimental validation. Ann Biomed Eng. 41(12):2515–2527.
  • Hamed E, Jasiuk I. 2013. Multiscale damage and strength of lamellar bone modeled by cohesive finite elements. J Mech Behav Biomed Mater. 28:94–110.
  • Hassenkam T, Fantner GE, Cutroni JA, Weaver JC, Morse DE, Hansma PK. 2004. High-resolution AFM imaging of intact and fractured trabecular bone. Bone. 35(1):4–10.
  • Hauptmann S, Dufner H, Brickmann J, Kast SM, Berry RS. 2003. Potential energy function for apatites. Phys Chem Chem Phys. 5(3):635–639.
  • Holm E, Gleberzon JS, Liao Y, Sørensen ES, Beier F, Hunter GK, Goldberg HA. 2014. Osteopontin mediates mineralization and not osteogenic cell development in vitro. Biochem J. 464(3):355–364.
  • Humphrey W, Dalke A, Schulten K. 1996. VMD: visual molecular dynamics. J Mol Graph. 14(1):33–38.
  • Hunter GK. 2013. Role of osteopontin in modulation of hydroxyapatite formation. Calcif Tissue Int. 93(4):348–354.
  • Ji B, Gao H. 2010. Mechanical principles of biological nanocomposites. Annu Rev Mater Res. 40:77–100.
  • Lai ZB, Bai R, Lei Z, Yan C. 2018. Interfacial mechanical behaviour of protein-mineral nanocomposites: a molecular dynamics investigation. J Biomech. 73:161–167.
  • Lai ZB, Bai R, Yan C. 2017. Effect of nano-scale constraint on the mechanical behaviour of osteopontin–hydroxyapatite interfaces. Comput Mater Sci. 126:59–65.
  • Lai ZB, Wang M, Yan C, Oloyede A. 2014. Molecular dynamics simulation of mechanical behavior of osteopontin-hydroxyapatite interfaces. J Mech Behav Biomed Mater. 36:12–20.
  • Lai ZB, Yan C. 2017. Mechanical behaviour of staggered array of mineralised collagen fibrils in protein matrix: effects of fibril dimensions and failure energy in protein matrix. J Mech Behav Biomed Mater. 65:236–247.
  • Launey ME, Buehler MJ, Ritchie RO. 2010. On the mechanistic origins of toughness in bone. Annu Rev Mater Res. 40:25–53.
  • Liao C, Xie Y, Zhou J. 2014. Computer simulations of fibronectin adsorption on hydroxyapatite surfaces. RSC Adv. 4(30):15759–15769.
  • Liao C, Zhou J. 2014. Replica-exchange molecular dynamics simulation of basic fibroblast growth factor adsorption on hydroxyapatite. J Phys Chem B. 118(22):5843–5852.
  • Libonati F, Nair AK, Vergani L, Buehler MJ. 2014. Mechanics of collagen–hydroxyapatite model nanocomposites. Mech Res Commun. 58:17–23.
  • McKee MD, Nanci A. 1995. Postembedding colloidal-gold immunocytochemistry of noncollagenous extracellular matrix proteins in mineralized tissues. Microsc Res Tech. 31(1):44–62.
  • McKee MD, Nanci A. 1996a. Osteopontin at mineralized tissue interfaces in bone, teeth, and osseointegrated implants: ultrastructural distribution and implications for mineralized tissue formation, turnover, and repair. Microsc Res Tech. 33(2):141–164.
  • McKee MD, Nanci A. 1996b. Osteopontin: an interfacial extracellular matrix protein in mineralized tissues. Connect Tissue Res. 35(1–4):197–205.
  • Mirkhalaf M, Khayer Dastjerdi A, Barthelat F. 2014. Overcoming the brittleness of glass through bio-inspiration and micro-architecture. Nat Commun. 5:3166.
  • Munch E, Launey ME, Alsem DH, Saiz E, Tomsia AP, Ritchie RO. 2008. Tough, bio-inspired hybrid materials. Science. 322(5907):1516–1520.
  • Naglieri V, Gludovatz B, Tomsia AP, Ritchie RO. 2015. Developing strength and toughness in bio-inspired silicon carbide hybrid materials containing a compliant phase. Acta Mater. 98:141–151.
  • Nanci A. 1999. Content and distribution of noncollagenous matrix proteins in bone and cementum: relationship to speed of formation and collagen packing density. J Struct Biol. 126(3):256–269.
  • Pan H, Tao J, Wu T, Tang R. 2007. Molecular simulation of water behaviors on crystal faces of hydroxyapatite. Front Chem China. 2(2):156–163.
  • Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, van der Spoel D, et al. 2013. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics. 29(7):845–854.
  • Sabet FA, Raeisi Najafi A, Hamed E, Jasiuk I. 2016. Modelling of bone fracture and strength at different length scales: a review. Interface Focus. 6(1):20150055.
  • Sato K, Kogure T, Iwai H, Tanaka J. 2002. Atomic-scale {101¯0} interfacial structure in hydroxyapatite determined by high-resolution transmission electron microscopy. J Am Ceram Soc. 85(12):3054–3058.
  • Sodek J, Ganss B, McKee MD. 2000. Osteopontin. Crit Rev Oral Biol Med. 11(3):279–303.
  • Tang Z, Kotov NA, Magonov S, Ozturk B. 2003. Nanostructured artificial nacre. Nat Mater. 2(6):413–418.
  • Thurner PJ, Chen CG, Ionova-Martin S, Sun L, Harman A, Porter A, Ager JW, 3rd, Ritchie RO, Alliston T. 2010. Osteopontin deficiency increases bone fragility but preserves bone mass. Bone. 46(6):1564–1573.
  • Thurner PJ, Erickson B, Jungmann R, Schriock Z, Weaver JC, Fantner GE, Schitter G, Morse DE, Hansma PK. 2007. High-speed photography of compressed human trabecular bone correlates whitening to microscopic damage. Eng Fract Mech. 74(12):1928–1941.
  • Ural A, Mischinski S. 2013. Multiscale modeling of bone fracture using cohesive finite elements. Eng Fract Mech. 103:141–152.
  • van Gunsteren WF, Berendsen HJC. 1987. Groningen molecular simulation (GROMOS) library manual. Groningen (the Netherlands): Biomos.
  • van Gunsteren WF, Billeter SR, Eising AA, Hünenberger PH, Krüger P, Mark AE, Scott WRP, Tironi IG. 1996. Biomolecular simulation: the GROMOS96 manual and user guide. Zürich (Switzerland): Vdf Hochschulverlag AG an der ETH Zürich.
  • Villarreal-Ramirez E, Garduño-Juarez R, Gericke A, Boskey A. 2014. The role of phosphorylation in dentin phosphoprotein peptide absorption to hydroxyapatite surfaces: a molecular dynamics study. Connect Tissue Res. 55(S1):134–137.
  • Wang Q, Wang M, Lu X, Wang K, Fang L, Ren F, Lu G. 2017. Effects of atomic-level nano-structured hydroxyapatite on adsorption of bone morphogenetic protein-7 and its derived peptide by computer simulation. Sci Rep. 7:15152.
  • Wang R, Gupta HS. 2011. Deformation and fracture mechanisms of bone and nacre. Annu Rev Mater Res. 41:41–73.
  • Wang Y, Ural A. 2018. Effect of modifications in mineralized collagen fibril and extra-fibrillar matrix material properties on submicroscale mechanical behavior of cortical bone. J Mech Behav Biomed Mater. 82:18–26.
  • Wegst UGK, Ashby MF. 2004. The mechanical efficiency of natural materials. Philos Mag. 84(21):2167–2181.
  • Wilson RM, Elliott JC, Dowker SEP. 1999. Rietveld refinement of the crystallographic structure of human dental enamel apatites. Am Mineral. 84(9):1406–1414.
  • Young MF, Kerr JM, Termine JD, Wewer UM, Wang MG, McBride OW, Fisher LW. 1990. cDNA cloning, mRNA distribution and heterogeneity, chromosomal location, and RFLP analysis of human osteopontin (OPN). Genomics. 7(4):491–502.
  • Zappone B, Thurner PJ, Adams J, Fantner GE, Hansma PK. 2008. Effect of Ca2+ ions on the adhesion and mechanical properties of adsorbed layers of human osteopontin. Biophys J. 95(6):2939–2950.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.