244
Views
8
CrossRef citations to date
0
Altmetric
Articles

Comparative finite element modelling of aneurysm formation and physiologic inflation in the descending aorta

&
Pages 1197-1208 | Received 05 Nov 2018, Accepted 26 Jul 2019, Published online: 21 Aug 2019

References

  • Alhayani AA, Giraldo JA, Rodríguez JF, Merodio J. 2013. Computational modelling of bulging of inflated cylindrical shells applicable to aneurysm formation and propagation in arterial wall tissue. Finite Elem Anal Des. 73:20–29.
  • Anssari-Benam A, Bucchi A. 2017. Modelling the deformation of the elastin network in aortic valve. J Biomech Eng. 140(1):011004.
  • Avril S, Badel P, Duprey A. 2010. Anisotropic and hyperelastic identification of in vitro human arteries from full-field optical measurements. J Biomech. 43(15):2978–2985.
  • Badel P, Avril S, Lessner S, Sutton M. 2011. Mechanical identification of hyperelastic anisotropic properties of mouse carotid arteries. Mech Biol Syst Mater. 2(c):11–17.
  • Badel P, Rohan CPY, Avril S. 2013. Finite Element simulation of buckling-induced vein tortuosity and influence of the wall constitutive properties. J Mech Behav Biomed Mater. 26:119–126.
  • Bellini C, Glass P, Sitti M, Di Martino ES. 2011. Biaxial mechanical modeling of the small intestine. J Mech Behav Biomed Mater. 4(8):1727–1740.
  • Bucchi A, Hearn GE. 2013. Predictions of aneurysm formation in distensible tubes: part A. Theoretical background to alternative approaches. Int J Mech Sci. 71:1–20.
  • Bucchi A, Hearn GE. 2013. Predictions of aneurysm formation in distensible tubes: part B. Application and comparison of alternative approaches. Int J Mech Sci. 70:155–170.
  • Chuong CJ, Fung YC. 1986. On residual stresses in arteries. J Biomech Eng. 108(2):189.
  • Crisfield M. 1981. A fast incremental/iterative solution procedure that handles “snap-through”. Comput Struct. 13(1–3):55–62.
  • Dassault Systèmes S. 2014. Abaqus analysis user’s guide. Vélizy-Villacoublay (France): Dassault Systèmes.
  • de Gelidi S. 2016. Investigation of aneurysm formation: a macro-structural approach [dissertation]. University of Portsmouth.
  • de Gelidi S, Tozzi G, Bucchi A. 2017. The effect of thickness measurement on numerical arterial models. Mater Sci Eng C Mater Biol Appl. 76:1205–1215.
  • Delfino A, Stergiopulos N, Moore JE, Meister JJ. 1997. Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation. J Biomech. 30(8):777–786.
  • Deplano V, Boufi M, Boiron O, Guivier-Curien C, Alimi Y, Bertrand E. 2016. Biaxial tensile tests of the porcine ascending aorta. J Biomech. 49(10):2031–2037.
  • Doyle BJ, Callanan A, McGloughlin TM. 2007. A comparison of modelling techniques for computing wall stress in abdominal aortic aneurysms. Biomed Eng Online. 6(1):38.
  • Doyle BJ, Corbett TJ, Callanan A, Walsh MT, Vorp DA, McGloughlin TM. 2009. An experimental and numerical comparison of the rupture locations of an abdominal aortic aneurysm. J Endovasc Ther. 16(3):322–335.
  • Drake R, Vogl W, Mitchell A, Gray H. 2010. Gray’s anatomy for students. 2nd ed. Philadelphia (PA): Churchill Livingstone.
  • Fan R, Sacks MS. 2014. Simulation of planar soft tissues using a structural constitutive model: Finite element implementation and validation. J Biomech. 47(9):2043–2054.
  • Fehervary H, Smoljkic M, Vander Sloten J, Famaey N. 2016. Planar biaxial testing of soft biological tissue using rakes: a critical analysis of protocol and fitting process. J Mech Behav Biomed Mater. 61:135–151.
  • Fu YB, Pearce SP, Liu KK. 2008. Post-bifurcation analysis of a thin-walled hyperelastic tube under inflation. Int J Nonlinear Mech. 43(8):697–706.
  • Fu YB, Rogerson G, Zhang Y. 2012. Initiation of aneurysms as a mechanical bifurcation phenomenon. International Journal of Non-Linear Mechanics. 47(2):179–184.
  • Fung YC. 1993. Biomechanics: mechanical properties of living tissues. New York (NY): Springer.
  • Fung YC, Fronek K, Patitucci P. 1979. Pseudoelasticity of arteries and the choice of its mathematical expression. Am Physiol Soc. 237:H620–H631.
  • Gasser CT, Auer M, Labruto F, Swedenborg J, Roy J. 2010. Biomechanical rupture risk assessment of abdominal aortic aneurysms: model complexity versus predictability of finite element simulations. Eur J Vasc Endovasc Surg. 40(2):176–185.
  • Georgakarakos E, Ioannou CV, Kamarianakis Y, Papaharilaou Y, Kostas T, Manousaki E, Katsamouris AN. 2010. The role of geometric parameters in the prediction of abdominal aortic aneurysm wall stress. Eur J Vasc Endovasc Surg. 39(1):42–48.
  • Giannakoulas G, Giannoglou G, Soulis J, Farmakis T, Papadopoulou S, Parcharidis G, Louridas G. 2005. A computational model to predict aortic wall stresses in patients with systolic arterial hypertension. Med Hypotheses. 65(6):1191–1195.
  • Giannoglou G, Giannakoulas G, Soulis J, Chatzizisis Y, Perdikides T, Melas N, Parcharidis G, Louridas G. 2006. Predicting the risk of rupture of abdominal aortic aneurysms by utilizing various geometrical parameters: revisiting the diameter criterion. Angiology. 57(4):487–494.
  • Han HC. 2007. A Biomechanical model of artery buckling. J Biomech. 40(16):3672–3678.
  • Holzapfel GA. 2006. Determination of material models for arterial walls from uniaxial extension tests and histological structure. J Theoretic Biol. 238(2):290–302.
  • Holzapfel GA, Gasser CT, Ogden RW. 2000. A new constitutive framework for arterial wall mechanics and a comperative study of material models. J Elast. 61(1/3):1–48.
  • Holzapfel GA, Gasser CT, Ogden RW. 2004. Comparison of a multi-layer structural model for arterial walls with a fung-type model, and issues of material stability. J Biomech Eng. 126(2):264–275.
  • Horgan CO, Murphy JG. 2010. Simple shearing of incompressible and slightly compressible isotropic nonlinearly elastic materials. J Elast. 98(2):205–221.
  • Horný L, Netušil M, Voňavková T. 2014. Axial prestretch and circumferential distensibility in biomechanics of abdominal aorta. Biomech Model Mechanobiol. 13(4):783–799.
  • Horný L, Žitný R, Chlup H, Macková H. 2006. Identification of the material parameters of an aor- tic wall. Bull Appl Mech. 2(8):173–181.
  • Isaksen JG, Bazilevs Y, Kvamsdal T, Zhang Y, Kaspersen JH, Waterloo K, Romner B, Ingebrigtsen T. 2008. Determination of wall tension in cerebral artery aneurysms by numerical simulation. Stroke. 39(12):3172–3178.
  • Koseki H, Miyata H, Shimo S, Ohno N, Mifune K, Shimano K, Yamamoto K, Nozaki K, Kasuya H, Narumiya S, Aoki T. 2019. Two diverse hemodynamic forces, a mechanical stretch and a high wall shear stress, determine intracranial aneurysm formation. Transl. Stroke Res. 1–13.
  • Labrosse MR, Beller CJ, Mesana T, Veinot JP. 2009. Mechanical behavior of human aortas: Experiments, material constants and 3-D finite element modeling including residual stress. J Biomech. 42(8):996–1004.
  • Lee AY, Sanyal A, Xiao Y, Shadfan R, Han HC. 2014. Mechanical instability of normal and aneurysmal arteries. J Biomech. 47(16):3868–3875.
  • Ma B, Lu J, Harbaugh RE, Raghavan ML. 2007. Nonlinear anisotropic stress analysis of anatomically realistic cerebral aneurysms. J Biomech Eng. 129:88–96.
  • Maher E, Creane A, Lally C, Kelly DJ. 2012. An anisotropic inelastic constitutive model to describe stress softening and permanent deformation in arterial tissue. J Mech Behav Biomed Mater. 12:9–19.
  • Marlow RS. 2003. A general first-invariant hyperelastic constitutive model. In: Busfield JJC, Muhr AH, editors. Constitutive models for rubber III. Lisse (the Netherlands): Taylor & Francis; p. 157–160.
  • NHS. 2017. Abdominal aortic aneurysm - Treatment - NHS Choices. [accessed 2014 Mar 10]. http://www.nhs.uk/Conditions/repairofabdominalaneurysm/Pages/Treatment.aspx.
  • NHS. 2019. High blood pressure (hypertension). [accessed 2019 Mar 6]. Available from: https://www.nhs.uk/conditions/high-blood-pressure-hypertension/.
  • Noordergraaf A. 1956. Physical basis of ballistocardiography. S-Gravenhage (the Netherlands): Excelsior. https://books.google.co.uk/books/about/Physical_Basis_of_Ballistocardiography.html?id=0uG4GQAACAAJ&pgis=1.
  • Nunes LCS, Moreira DC. 2013. Simple shear under large deformation: experimental and theoretical analyses. Eur J Mech A. 42:315–322.
  • Ogden RW. 1972. Large deformation isotropic elasticity - on the correlation of theory and experiment for incompressible rubberlike solids. Royal Soc. 326(1567):565–584.
  • Ogden RW. 1997. Non-linear elastic deformations. Mineola (NY): Dover Publications.
  • Pandit A, Lu X, Wang C, Kassab GS. 2005. Biaxial elastic material properties of porcine coronary media and adventitia. Am J Physiol—Heart Circ Physiol. 288(6):H2581–H2587.
  • Public Health England. 2019. AAA screening annual data published for 2017 to 2018. [accessed 2019 Mar 6]. https://phescreening.blog.gov.uk/2019/01/31/aaa-screening-annual-data-published-for-2018-to-2018/.
  • Rachev A. 2009. A theoretical study of mechanical stability of arteries. J Biomech Eng. 131(5):051006.
  • Raghavan ML, Vorp DA. 2000. Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. J Biomech. 33(4):475–482.
  • Ramachandran M, Laakso A, Harbaugh RE, Raghavan ML. 2012. On the role of modeling choices in estimation of cerebral aneurysm wall tension. J Biomech. 45(16):2914–2919.
  • Riks E. 1979. An incremental approach to the solution of snapping and buckling problems. Int J Solid Struct. 15(7):529–551.
  • Rodríguez JF, Merodio J. 2011. A new derivation of the bifurcation conditions of inflated cylindrical membranes of elastic material under axial loading. Application to aneurysm formation. Mech Res Commun. 38(3):203–210.
  • Rodríguez JF, Ruiz C, Doblaré M, Holzapfel GA, 2008. Mechanical stresses in abdominal aortic aneurysms: influence of diameter, asymmetry, and material anisotropy. J Biomech Eng. 130(2):021023.
  • Schmidt T, Pandya D, Balzani D. 2015. Influence of isotropic and anisotropic material models on the mechanical response in arterial walls as a result of supra-physiological loadings. Mech Res Commun. 64:29–37.
  • Schulze-Bauer CJ, Holzapfel GA. 2003. Determination of constitutive equations for human arteries from clinical data. J Biomech. 36(2):165–169.
  • Schulze-Bauer CAJ, Regitnig P, Holzapfel GA. 2002. Mechanics of the human femoral adventitia including the high-pressure response. Am J Physiol—Heart Circ Physiol. 282(6):H2427–H2440.
  • Scotti CM, Jimenez J, Muluk SC, Finol EA. 2008. Wall stress and flow dynamics in abdominal aortic aneurysms: finite element analysis vs. fluid-structure interaction. Comput Methods Biomech Biomed Eng. 11(3):301–322.
  • Shang EK, Nathan DP, Woo EY, Fairman RM, Wang GJ, Gorman RC, Gorman JH, Jackson BM. 2015. Local wall thickness in finite element models improves prediction of abdominal aortic aneurysm growth. J Vasc Surg. 61(1):217–223.
  • Signorelli F, Sela S, Gesualdo L, Chevrel S, Tollet F, Pailler-Mattei C, Tacconi L, Turjman F, Vacca A, Schul DB. 2018. Hemodynamic stress, inflammation, and intracranial aneurysm development and rupture: a systematic review. World Neurosurg. 115:234–244.
  • Sommer G, Sherifova S, Oberwalder PJ, Dapunt OE, Ursomanno PA, DeAnda A, Griffith BE, Holzapfel GA. 2016. Mechanical strength of aneurysmatic and dissected human thoracic aortas at different shear loading modes. J Biomech. 49(12):2374–2382.
  • Sun W, Sacks MS. 2005. Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues. Biomech Model Mechanobiol. 4(2–3):190–199.
  • Sun W, Sacks MS, Scott MJ. 2005. Effects of boundary conditions on the estimation of the planar biaxial mechanical properties of soft tissues. J Biomech Eng. 127(4):709–715.
  • Takizawa K, Christopher J, Tezduyar TE, Sathe S. 2010. Space-time finite element computation of arterial fluid-structure interactions with patient-specific data. Int J Numer Meth Biomed Engng. 26(1):101–116.
  • Vaishnav RN, Vossoughi J. 1987. Residual stress and strain in aortic segments. J Biomech. 20(3):235–239.
  • Vande Geest JP, Sacks MS, Vorp DA. 2006. The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta. J Biomech. 39(7):1324–1334.
  • Vossoughi J, Tözeren A. 1998. Determination of an effective shear modulus of aorta. Russ J Biomech. 1–2:20–36.
  • Vychytil J, Moravec F, Kochová P, Kuncová J, Švíglerová J. 2010. Modelling of the mechanical behaviour of porcine carotid artery undergoing inflation-deflation test. Appl Comput Mech. 4:251–262.
  • Wang DHJ, Makaroun MS, Webster MW, Vorp DA. 2002. Effect of intraluminal thrombus on wall stress in patient-specific models of abdominal aortic aneurysm. J Vasc Surg. 36(3):598–604.
  • Wang JJ, Parker KH. 2004. Wave propagation in a model of the arterial circulation. J Biomech. 37(4):457–470.
  • Wang X, Li X. 2011. Fluid-structure interaction based study on the physiological factors affecting the behaviors of stented and non-stented thoracic aortic aneurysms. J Biomech. 44(12):2177–2184.
  • Westerhof N, Bosman F, De Vries CJ, Noordergraaf A. 1969. Analog studies of the human systemic arterial tree. J Biomech. 2(2):121–143.
  • Yeoh OH. 1993. Some forms of the strain energy function for rubber. Rubber Chem Technol. 66(5):754–771.
  • Zhou J, Fung YC. 1997. The degree of nonlinearity and anisotropy of blood vessel elasticity. Proc Natl Acad Sci USA. 94(26):14255–14260.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.