440
Views
3
CrossRef citations to date
0
Altmetric
Articles

Separate modeling of cortical and trabecular bone offers little improvement in FE predictions of local structural stiffness at the proximal tibia

, &
Pages 1258-1268 | Received 20 Aug 2018, Accepted 26 Aug 2019, Published online: 11 Sep 2019

References

  • Austman RL, Milner JS, Holdsworth DW, Dunning CE. 2008. The effect of the density–modulus relationship selected to apply material properties in a finite element model of long bone. J Biomech. 41(15):3171–3176.
  • Bessho M, Ohnishi I, Matsuyama J, Matsumoto T, Imai K, Nakamura K. 2007. Prediction of strength and strain of the proximal femur by a CT-based finite element method. J Biomech. 40(8):1745–1753.
  • Carter DR, Hayes WC. 1977. The compressive behavior of bone as a two-phase porous structure. J Bone Joint Surg Am. 59(7):954–962.
  • Chappard C, Peyrin F, Bonnassie A, Lemineur G, Brunet-Imbault B, Lespessailles E, Benhamou CL. 2006. Subchondral bone micro-architectural alterations in osteoarthritis: a synchrotron micro-computed tomography study. Osteoarthr Cartil. 14(3):215–223.
  • Chen G, Schmutz B, Epari D, Rathnayaka K, Ibrahim S, Schuetz MA, Pearcy MJ. 2010. A new approach for assigning bone material properties from CT images into finite element models. J Biomech. 43(5):1011–1015.
  • Chen G, Wu FY, Liu ZC, Yang K, Cui F. 2015. Comparisons of node-based and element-based approaches of assigning bone material properties onto subject-specific finite element models. Med Eng Phys. 37(8):808–812.
  • Clark J, Huber J. 1990. The structure of the human subchondral plate. J Bone Joint Surg Br. 72(5):866–873.
  • Cong A, Buijs JOD, Dragomir-Daescu D. 2011. In situ parameter identification of optimal density–elastic modulus relationships in subject-specific finite element models of the proximal femur. Med Eng Phy. 33(2):164–173.
  • Ding M, Odgaard A, Hvid I. 2003. Changes in the three-dimensional microstructure of human tibial cancellous bone in early osteoarthritis. J Bone Joint Surg Br. 85(6):906–912.
  • Dragomir-Daescu D, Op Den Buijs J, McEligot S, Dai Y, Entwistle RC, Salas C, Melton LJ, Bennet KE, Khosla S, Amin S. 2011. Robust QCT/FEA models of proximal femur stiffness and fracture load during a sideways fall on the hip [journal article]. Ann Biomed Eng. 39(2):742–755.
  • Dragomir-Daescu D, Salas C, Uthamaraj S, Rossman T. 2015. Quantitative computed tomography-based finite element analysis predictions of femoral strength and stiffness depend on computed tomography settings. J Biomech. 48(1):153–161.
  • Eberle S, Göttlinger M, Augat P. 2013. An investigation to determine if a single validated density-elasticity relationship can be used for subject specific finite element analyses of human long bones. Med Eng Phys. 35(7):875–883.
  • Edwards WB, Schnitzer TJ, Troy KL. 2013. Torsional stiffness and strength of the proximal tibia are better predicted by finite element models than DXA or QCT. J Biomech. 46(10):1655–1662.
  • Enns-Bray WS, Ariza O, Gilchrist S, Widmer Soyka RP, Vogt PJ, Palsson H, Boyd SK, Guy P, Cripton PA, Ferguson SJ, et al. 2016. Morphology based anisotropic finite element models of the proximal femur validated with experimental data. Med Eng Phys. 38(11):1339–1347.
  • Enns-Bray WS, Owoc JS, Nishiyama KK, Boyd SK. 2014. Mapping anisotropy of the proximal femur for enhanced image based finite element analysis. J Biomech. 47(13):3272–3278.
  • Goulet RW, Goldstein SA, Ciarelli MJ, Kuhn JL, Brown M, Feldkamp L. 1994. The relationship between the structural and orthogonal compressive properties of trabecular bone. J Biomech. 27(4):375–389.
  • Gray HA, Taddei F, Zavatsky AB, Cristofolini L, Gill HS. 2008. Experimental validation of a finite element model of a human cadaveric tibia. J Biomech Eng. 130(3):031016–031016.
  • Gupta S, van der Helm FCT, Sterk JC, van Keulen F, Kaptein BL. 2004. Development and experimental validation of a three-dimensional finite element model of the human scapula. Proc Inst Mech Eng H. 218(2):127–142.
  • Helgason, B, Perilli, E, Schileo, E, Taddei, F, Brynjólfsson, S, Viceconti, M. 2008. Mathematical relationships between bone density and mechanical properties: A literature review. Clinical Biomechanics. 23(2):135–146. doi:10.1016/j.clinbiomech.2007.08.024.
  • Helgason B, Taddei F, Pálsson H, Schileo E, Cristofolini L, Viceconti M, Brynjólfsson S. 2008. A modified method for assigning material properties to FE models of bones. Med Eng Phys. 30(4):444–453.
  • Johnston JD, Kontulainen SA, Masri BA, Wilson DR. 2011. Predicting subchondral bone stiffness using a depth-specific CT topographic mapping technique in normal and osteoarthritic proximal tibiae. Clin Biomech (Bristol, Avon). 26(10):1012–1018.
  • Johnston JD, Masri BA, Wilson DR. 2009. Computed tomography topographic mapping of subchondral density (CT-TOMASD) in osteoarthritic and normal knees: methodological development and preliminary findings. Osteoarthr Cartil. 17(10):1319–1326.
  • Kersh ME, Zysset PK, Pahr DH, Wolfram U, Larsson D, Pandy MG. 2013. Measurement of structural anisotropy in femoral trabecular bone using clinical-resolution CT images. J Biomech. 46(15):2659–2666.
  • Kluess D, Souffrant R, Mittelmeier W, Wree A, Schmitz K-P, Bader R. 2009. A convenient approach for finite-element-analyses of orthopaedic implants in bone contact: Modeling and experimental validation. Comput Methods Programs Biomed. 95(1):23–30.
  • Larsson D, Luisier B, Kersh M, Dall’Ara E, Zysset P, Pandy M, Pahr D. 2014. Assessment of transverse isotropy in clinical-level CT images of trabecular bone using the gradient structure tensor. Ann Biomed Eng. 42(5):950–959. English.
  • Maquer G, Musy SN, Wandel J, Gross T, Zysset PK. 2015. Bone volume fraction and fabric anisotropy are better determinants of trabecular bone stiffness than other morphological variables. J Bone Miner Res. 30(6):1000–1008.
  • Milz S, Putz R. 1994. Quantitative morphology of the subchondral plate of the tibial plateau. J Anat. 185(Pt 1):103.
  • Nazemi SM, Amini M, Kontulainen SA, Milner JS, Holdsworth DW, Masri BA, Wilson DR, Johnston JD. 2015. Prediction of local proximal tibial subchondral bone structural stiffness using subject-specific finite element modeling: Effect of selected density-modulus relationship. Clin Biomech (Bristol, Avon). 30(7):703–712.
  • Nazemi SM, Amini M, Kontulainen SA, Milner JS, Holdsworth DW, Masri BA, Wilson DR, Johnston JD. 2017. Optimizing finite element predictions of local subchondral bone structural stiffness using neural network-derived density-modulus relationships for proximal tibial subchondral cortical and trabecular bone. Clin Biomech (Bristol, Avon). 41:1–8.
  • Nazemi SM, Kalajahi SMH, Cooper DML, Kontulainen SA, Holdsworth DW, Masri BA, Wilson DR, Johnston JD. 2017. Accounting for spatial variation of trabecular anisotropy with subject-specific finite element modeling moderately improves predictions of local subchondral bone stiffness at the proximal tibia. J Biomech. 59:101–108.
  • Pakdel A, Fialkov J, Whyne CM. 2016. High resolution bone material property assignment yields robust subject specific finite element models of complex thin bone structures. J Biomech. 49(9):1454–1460.
  • Pakdel A, Mainprize JG, Robert N, Fialkov J, Whyne CM. 2014. Model-based PSF and MTF estimation and validation from skeletal clinical CT images. Med Phys. 41(1):011906
  • Radin E, Paul I, Rose R. 1972. Role of mechanical factors in pathogenesis of primary osteoarthritis. Lancet. 1(7749):519–522.
  • Radin EL, Rose RM. 1986. Role of subchondral bone in the initiation and progression of cartilage damage. Clin Orthop Relat Res. 213:34–40.
  • Rho JY, Hobatho MC, Ashman RB. 1995. Relations of mechanical properties to density and CT numbers in human bone. Med Eng Phys. 17(5):347–355.
  • Snyder SM, Schneider E. 1991. Estimation of mechanical properties of cortical bone by computed tomography. J Orthop Res. 9(3):422–431.
  • Sven P, Klaus E, Willi AK. 1999. Accuracy limits for the determination of cortical width and density: the influence of object size and CT imaging parameters. Phys Med Biol. 44(3):751.
  • Taddei F, Pancanti A, Viceconti M. 2004. An improved method for the automatic mapping of computed tomography numbers onto finite element models. Med Eng Phys. 26(1):61–69.
  • Taddei F, Schileo E, Helgason B, Cristofolini L, Viceconti M. 2007. The material mapping strategy influences the accuracy of CT-based finite element models of bones: an evaluation against experimental measurements. Med Eng Phys. 29(9):973–979.
  • Treece GM, Poole KES, Gee AH. 2012. Imaging the femoral cortex: thickness, density and mass from clinical CT. Med Image Anal. 16(5):952–965.
  • Tuncer M, Hansen UN, Amis AA. 2014. Prediction of structural failure of tibial bone models under physiological loads: Effect of CT density-modulus relationships. Med Eng Phys. 36(8):991–997.
  • Venäläinen MS, Mononen ME, Väänänen SP, Jurvelin JS, Töyräs J, Virén T, Korhonen RK. 2016. Effect of bone inhomogeneity on tibiofemoral contact mechanics during physiological loading. J Biomech. 49(7):1111–1120.
  • Wirtz DC, Schiffers N, Pandorf T, Radermacher K, Weichert D, Forst R. 2000. Critical evaluation of known bone material properties to realize anisotropic FE-simulation of the proximal femur. J Biomech. 33(10):1325–1330.
  • Yamada K, Healey R, Amiel D, Lotz M, Coutts R. 2002. Subchondral bone of the human knee joint in aging and osteoarthritis. Osteoarthr Cartil. 10(5):360–369.
  • Zannoni C, Mantovani R, Viceconti M. 1999. Material properties assignment to finite element models of bone structures: a new method. Med Eng Phy. 20(10):735–740.
  • Zysset PK, Curnier A. 1995. An alternative model for anisotropic elasticity based on fabric tensors. Mech Mater. 21(4):243–250.
  • Zysset PK, Sonny M, Hayes WC. 1994. Morphology-mechanical property relations in trabecular bone of the osteoarthritic proximal tibia. J Arthroplasty. 9(2):203–216.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.