537
Views
4
CrossRef citations to date
0
Altmetric
Articles

A biomechanical model of the pathological aortic valve: simulation of aortic stenosis

ORCID Icon, , , , &
Pages 303-311 | Received 21 Dec 2018, Accepted 20 Jan 2020, Published online: 29 Jan 2020

References

  • Auricchio F, Conti M, Morganti S, Reali A. 2014. Simulation of transcatheter aortic valve implantation: a patient-specific finite element approach. Comput Methods Biomech Biomed Eng. 17(12):1347–1357.
  • Bailey J, Curzen N, Bressloff NW. 2016. Assessing the impact of including leaflets in the simulation of TAVI deployment into a patient-specific aortic root. Comput Methods Biomech Biomed Eng. 19(7):733–744.
  • Baumgartner H, Falk V, Bax JJ, De Bonis M, Hamm C, Holm PJ, Iung B, Lancellotti P, Lansac E, Rodriguez Muñoz D, et al. 2017b. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur Heart J. 38(36):2739–2791.
  • Baumgartner H, Hung J, Bermejo J, Chambers JB, Edvardsen T, Goldstein E, Lancellotti P, LeFevre M, Miller F, Otto CM. 2017a. Recommendations on the echocardiographic assessment of aortic valve stenosis: a focused update from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. Eur Heart J. 18(3):254–275.
  • Baumgartner H, Hung J, Bermejo J, Chambers JB, Evangelista A, Griffin BP, Iung B, Otto CM, Pellikka PA, Quiñones M. 2009. Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice. J Am Soc Echocardiogr. 22(1):1–23.
  • COMSOL Multiphysics v.5.2. (2008). Stockholm (Sweden): COMSOL AB. www.comsol.com.
  • Eurostat Statistics. 2012. Population structure and ageing. [online]. [accessed 2018 Dec 12]. https://ec.europa.eu/eurostat/statistics-explained/index.php/Population_structure_and_ageing.
  • Finotello A, Morganit S, Auricchio F. 2017. Finite element analysis of TAVI: Impact of native aortic root computational modeling strategies on simulation outcomes. Med Eng Phys. 47:2–12.
  • Juergen R, Werner M, Yorik van H. (2001–2018). FreeCAD v 2018.0.16. [Software]. Available from http://www.freecadweb.org/.
  • Freeman RV, Otto CM. 2005. Spectrum of calcific aortic valve disease. Circulation. 111(24):3316–3326.
  • Guivier G, Deplano V, Pibarot P. 2005. A fluid–structure interaction model of the aortic valve in the presence of a subaortic stenosis. Comput Methods Biomech Biomed Eng. 8(Suppl 1):129–130.
  • Hatoum H, Dasi LP. 2018. Sinus hemodynamics in representative stenotic native bicuspid and tricuspid aortic valves: An in-vitro study. Fluids. 3(3):56.
  • Krapf L, Dreyfus J, Cueff C, Lepage L, Broche E, Vahanian A, Messika-Zeitoun D. 2013. Anatomical features of rheumatic and non-rheumatic mitral stenosis: Potential additional value of three-dimensional echocardiography. Arch Cardiovasc Dis. 106(2):111–115.
  • Labrosse MR, Beller CJ, Robicsek F, Thubrikar MJ. 2006. Geometric modeling of functional trileaflet aortic valves: Development and clinical applications. J Biomech. 39(14):2665–2672.
  • Labrosse MR, Lobo K, Beller C. 2010. Structural analysis of the natural aortic valve in dynamics: From unpressurized to physiologically loaded. J Biomech. 43(10):1916–1922.
  • Lau KD, Diaz V, Scambler P, Burriesci G. 2010. Mitral valve dynamics in structural and fluid-structure interaction models. Med Eng Phys. 32(9):1057–1064.
  • Lindman BR, Bonow RO, Otto CM. 2013. Current management of calcific aortic stenosis. Circ Res. 113(2):223–237.
  • Loureiro-Ga M, Veiga C, Fdez-Manin G, Jimenez VA, Juan Salvadores P, Baz JA, Iniguez A. 2018. Hemodynamics of the left coronary artery after TAVI procedure: a numerical simulation analysis. Eur Heart J. 39(Issue suppl_1):6224. doi:10.1093/eurheartj/ehy566.
  • Mao W, Caballero A, McKay R, Primiano C, Sun W. 2017. Fully-coupled fluid-structure interaction simulation of the aortic and mitral valves in a realistic 3D left ventricle model. PLoS One. 12(9):e0184729.
  • Mohammadi H, Cartier R, Mongrain R. 2016. 3D physiological model of the aortic valve incorporating small coronary arteries. Numer Methods Biomed Eng. 2017;33:e2829.
  • Morganti S, Valentini A, Favalli V, Serio A, Gambarin FI, Vella D, Mazzocchi L, Massetti M, Auricchio F, Arbustini E. 2013. Aortic root 3D parametric morphological model from 2D-echo images. Comput Biol Med. 43(12):2196–2204.
  • Naghavi M, Wang H, Lozano R, Davis A, Liang X, Zhou M, Vollset SE, Ozgoren AA, Abdalla S, Abd-Allah F, et al. 2015. Global, regional, and national agesex specic all-cause and cause-specic mortality for 240 causes of death, 1990–2013: a systematic analysis for the global burden of disease study 2013. Lancet. 385(9963):117–171.
  • Nestola MGC, Faggiano E, Vergara C, Lancellotti RM, Ippolito S, Antona C, Filippi S, Quarteroni A, Scrofani R. 2017. Computational comparison of aortic root stresses in presence of stentless and stented aortic valve bio-prostheses. Comput Methods Biomech Biomed Engin. 20(2):171–181.
  • Niederhoffer N, Lartaud-Idjouadiene I, Giummelly P, Duvivier C, Peslin R, Atkinson J. 1997. Calcification of medial elastic fibers and aortic elasticity. Hypertension. 29(4):999–1006.
  • Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP, Fleisher LA, Jneid H, Mack MJ, McLeod CJ, O’Gara PT, et al. 2017. 2017 AHA/ACC focused update of the 2014 AHA/ACC guideline for the management of patients with valvular heart disease. Circulation. 135(25):e1159–e1195.
  • Owen B, Bojdo N, Jivkov A, Keavney B, Revell A. 2018. Structural modelling of the cardiovascular system. Biomech Model Mechanobiol. 17(5):1217–1242.
  • Robissek F. 1991. Leonardo da vinci and the sinuses of valsalva. Ann Thoruc Surg. 52:328–335.
  • Rezvani-Sharif A, Tafazzoli-Shadpour M, Avolio A. 2018. Progressive changes of elastic moduli of arterial wall and atherosclerotic plaque components during plaque development in human coronary arteries. Med Biol Eng Comput. 57(3):731–740.
  • Sturla F, Votta E, Stevanella M, Conti CA, Redaelli A. 2013. Impact of modeling fluid–structure interaction in the computational analysis of aortic root biomechanics. Med Eng Phys. 35(12):1721–1730.
  • Wei ZA, Sonntag SJ, Toma M, Singh-Gryzbon S, Sun W. 2018. Computational fluid dynamics assessment associated with transcateter heart valve prostheses: A position paper of the ISO Working Group. Cardiovasc Eng Tech. 9(3):289–299.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.