371
Views
18
CrossRef citations to date
0
Altmetric
Articles

Multi-objective reliability based design optimization using Kriging surrogate model for cementless hip prosthesis

&
Pages 854-867 | Received 01 Nov 2019, Accepted 08 May 2020, Published online: 01 Jun 2020

References

  • Aoues Y, Chateauneuf A. 2010. Benchmark study of numerical methods for reliability-based design optimization. Struct Multidisc Optim. 41(2):277–294.
  • Barakat S, Bani-Hani K, Taha MQ. 2004. Multi-objective reliability-based optimization of prestressed concrete beams. Struct Saf. 26(3):311–342.
  • Bouazizi M-L, Ghanmi S, Bouhaddi N. 2009. Multi-objective optimization in dynamics of the structures with nonlinear behavior: Contributions of the metamodels. Finite Elem Anal Des. 45(10):612–623.
  • Bradford E, Schweidtmann AM, Lapkin A. 2018. Correction to: Efficient multiobjective optimization employing gaussian processes, spectral sampling and a genetic algorithm. J Glob Optim. 71(2):439–440.
  • Cho JR, Lee JH, Jeong KM, Kim KW. 2012. Optimum design of run-flat tire insert rubber by genetic algorithm. Finite Elem Anal Des. 52:60–70.
  • Comis Da Ronco C, Ponza R, Benini E. 2015. Aerodynamic shape optimization of aircraft components using an advanced multi-objective evolutionary approach. Comput Methods Appl Mech Eng. 285:255–290.
  • Dammak K, El Hami A, Koubaa S, Walha L, Haddar M. 2017. Reliability based design optimization of coupled acoustic-structure system using generalized polynomial chaos. Int J Mech Sci. 134:75–84.
  • Dammak K, El Hami A. 2019. Multi-objective reliability based design optimization of coupled acoustic-structural system. Eng Struct. 197:109389.
  • Dammak K, Yaich A, El Hami A, Walha L, Haddar M. 2018. An efficient optimization based on the robust hybrid method for the coupled acoustic-structural system. Mech Adv Mater Struct. :1–11.
  • Deb K, Padmanabhan D, Gupta S, Mall AK. 2007. Reliability-based multi-objective optimization using evolutionary algorithms. In International Conference on Evolutionary Multi-Criterion Optimization; Springer. p. 66–80.
  • Deb K, Pratap A, Agarwal S, Meyarivan T. 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Computat. 6(2):182–197.
  • Dey S, Mukhopadhyay T, Adhikari S. 2017. Metamodel based high-fidelity stochastic analysis of composite laminates: A concise review with critical comparative assessment. Compos Struct. 171:227–250.
  • Dey S, Mukhopadhyay T, Haddad Khodaparast H, Kerfriden P, Adhikari S. 2015. Rotational and ply-level uncertainty in response of composite shallow conical shells. Compos Struct. 131:594–605.
  • Dubourg V, Sudret B, Bourinet J-M. 2011. Reliability-based design optimization using kriging surrogates and subset simulation. Struct Multidisc Optim. 44(5):673–690.
  • El’Sheikh HF, MacDonald BJ, Hashmi MSJ. 2003. Finite element simulation of the hip joint during stumbling: a comparison between static and dynamic loading. J Mater Process Tech. 143–144:249–255.
  • Fang J, Gao Y, Sun G, Li Q. 2013. Multiobjective reliability-based optimization for design of a vehicledoor. Finite Elem Anal Des. 67:13–21.
  • Fernandes PR, Folgado J, Ruben RB. 2004. Shape optimization of a cementless hip stem for a minimum of interface stress and displacement. Comput Methods Biomech Biomed Eng. 7(1):51–61.
  • Forrester A, Sobester A, Keane A. 2008. Engineering design via surrogate modelling: a practical guide. New York: Wiley.
  • Forrester AI, Keane AJ. 2009. Recent advances in surrogate-based optimization. Prog Aerosp Sci. 45(1–3):50–79.
  • Fraldi M, Esposito L, Perrella G, Cutolo A, Cowin SC. 2010. Topological optimization in hip prosthesis design. Biomech Model Mechanobiol. 9(4):389–402.
  • Girosi F. 1998. An equivalence between sparse approximation and support vector machines. Neural Comput. 10(6):1455–1480.
  • Hamzehkolaei NS, Miri M, Rashki M. 2018. New simulation-based frameworks for multi-objective reliability-based design optimization of structures. Appl Math Modell. 62:1–20.
  • Hedia HS, Fouda N. 2014. Design optimization of cementless hip prosthesis coating through functionally graded material. Comput Mater Sci. 87:83–87.
  • Herrera A, Rebollo S, Ibarz E, Mateo J, Gabarre S, Gracia L. 2014. Mid-term study of bone remodeling after femoral cemented stem implantation: Comparison between dxa and finite element simulation. J Arthroplasty. 29(1):90–100.
  • Huang C-H, Wu P-Y. 2011. An optimal control problem in estimating the cooling condition for a cemented hip replacement system. Appl Math Modell. 35(11):5480–5491.
  • Immonen E. 2017. 2d shape optimization under proximity constraints by cfd and response surface methodology. Appl Math Modell. 41:508–529.
  • Janusevskis J, Le Riche R. 2013. Simultaneous kriging-based estimation and optimization of mean response. J Glob Optim. 55(2):313–336.
  • Jin R, Du X, Chen W. 2003. The use of metamodeling techniques for optimization under uncertainty. Struct Multidiscip Optim. 25(2):99–116.
  • Kalyanmoy D. 2011. Multi-objective optimization using evolutionary algorithms: An introduction. KanGAL Report 2011003.
  • Katoozian H. 1993. Three dimensional design optimization of femoral components of total hip endoprostheses [PhD thesis]. Case Western Reserve University.
  • Kharmanda G, Ibrahim H, Sharabaty S. 2009. Optimum safety factors for nonlinear reliability-based design optimization: applications on orthopedic replacement design. Res J Aleppo Univ. 67:22–37.
  • Kharmanda G, Mohamed A, Lemaire M. 2002. Efficient reliability-based design optimization using hybrid space with application to finite element analysis. Struct Multidisc Optim. 24(3):233–245.
  • Kharmanda G, Sharabatey S, Ibrahim H, Makhloufi A, El Hami A. 2009. Reliability-based design optimization using semi-numerical strategies for structural engineering applications. Int J CAD/CAM. 9:1–16.
  • Kharmanda G. 2015. Reliability analysis for cementless hip prosthesis using a new optimized formulation of yield stress against elasticity modulus relationship. Mater Des. 65:496–504.
  • Kharmanda G. 2016. Integration of multi-objective structural optimization into cementless hip prosthesis design: Improved austin-moore model. Comput Methods Biomech Biomed Eng. 19(14):1557–1566.
  • Kroetz HM, Tessari RK, Beck AT. 2017. Performance of global metamodeling techniques in solution of structural reliability problems. Adv Eng Softw. 114:394–404.
  • Laurent L, Boucard P-A, Soulier B. 2013. Generation of a cokriging metamodel using a multiparametric strategy. Comput Mech. 51(2):151–169.
  • Liu Y, Wang X, Wang L. 2019. Interval uncertainty analysis for static response of structures using radial basis functions. Appl Math Modell. 69:425–440.
  • Lizotte DJ, Greiner R, Schuurmans D. 2012. An experimental methodology for response surface optimization methods. J Glob Optim. 53(4):699–736.
  • Mackerle J. 2006. Finite element modeling and simulations in orthopedics: a bibliography 1998–2005. Comput Methods Biomech Biomed Eng. 9(3):149–199.
  • McKay MD, Beckman RJ, Conover WJ. 1979. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics. 21(2):239–245.
  • Meckesheimer M, Booker A, Barton R, Simpson T. 2002. Computationally inexpensive metamodel assessment strategies. AIAA J. 40(10):2053–2060.
  • Mukhopadhyay T, Chakraborty S, Dey S, Adhikari S, Chowdhury R. 2017. A critical assessment of kriging model variants for high-fidelity uncertainty quantification in dynamics of composite shells. Arch Computat Methods Eng. 24(3):495–518.
  • Myers RH, Montgomery DC, Andersson-Cook, CM. 2008. Response surface methodology: process and product optimization using designed experiments. 3rd ed. New Jersey, USA: Wiley.
  • Myers RH, Montgomery DC. 2002. Response surface methodology. 2nd ed. New York: Wiley.
  • Naskar S, Mukhopadhyay T, Sriramula S, Adhikari S. 2017. Stochastic natural frequency analysis of damaged thin-walled laminated composite beams with uncertainty in micromechanical properties. Compos Struct. 160:312–334.
  • Nielsen HB, Lophaven SN, Sndergaard J, Dace A. 2002. A matlab kriging toolbox. Technical report. Technical University of Denmark.
  • Ruben RB, Fernandes PR, Folgado J. 2012. On the optimal shape of hip implants. J Biomech. 45(2):239–246.
  • Ryberg AB, Domeij BR, Nilsson L. 2012. Metamodel-based multidisciplinary design optimization for automotive applications. Technical report. Division of Solid Mechanics, Linkping University.
  • Shi Y, Lu Z, Xu L, Chen S. 2019. An adaptive multiple-kriging-surrogate method for time-dependent reliability analysis. Appl Math Modell. 70:545–571.
  • Simpson TW, Peplinski J, Koch PN, Allen JK. 1997. On the use of statistics in design and the implications for deterministic computer experiments. In Proc. Design Theory and Methodology (DTM 97).
  • Simpson TW, Poplinski JD, Koch PN, Allen JK. 2001. Metamodels for computer-based engineering design: survey and recommendations. EWC. 17(2):129–150.
  • Stander N, Roux W, Goel T, Eggleston T, Craig K. 2010. Ls-opt user’s manual. Technical report. Livermore Software Technology Corporation.
  • Sun G, Li G, Zhou S, Li H, Hou S, Li Q. 2011. Crashworthiness design of vehicle by using multiobjective robust optimization. Struct Multidisc Optim. 44(1):99–110.
  • Tarlochan F, Mehboob H, Mehboob A, Chang S-H. 2018. Influence of functionally graded pores on bone ingrowth in cementless hip prosthesis: a finite element study using mechano-regulatory algorithm. Biomech Model Mechanobiol. 17(3):701–716.
  • Toledo R, Aznárez JJ, Greiner D, Maeso O. 2017. A methodology for the multi-objective shape optimization of thin noise barriers. Appl Math Modell. 50:656–675.
  • Wolff J. The law of bone remodeling. maqet p, furlong r, trans, 1986.
  • Yaich A, Kharmanda G, El Hami A, Walha L, Haddar M. 2017. Reliability based design optimization for multiaxial fatigue damage analysis using robust hybrid method. J Mech. 44:1–16.
  • Zhang Y, Xu X, Sun G, Lai X, Li Q. 2018. Nondeterministic optimization of tapered sandwich column for crashworthiness. Thin-Walled Struct. 122:193–207.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.