1,389
Views
5
CrossRef citations to date
0
Altmetric
Articles

Finite element models can reproduce the effect of nucleotomy on the multi-axial compliance of human intervertebral discs

, , , , , & show all
Pages 934-944 | Received 15 Nov 2019, Accepted 21 May 2020, Published online: 16 Jun 2020

References

  • Adams MA, Roughley PJ. 2006. What is intervertebral disc degeneration, and what causes it? Spine. 31(18):2151–2161.
  • Adams MA, McMillan DW, Green TP, Dolan P. 1996. Sustained loading generates stress concentrations in lumbar intervertebral discs. Spine. 21(4):434–438.
  • Benveniste H, Kim K, Zhang L, Johnson GA. 2000. Magnetic resonance microscopy of the C57BL mouse brain. Neuroimage. 11(6 Pt 1):601–611.
  • Bibby SR, Jones DA, Lee RB, Yu J, Urban JP. 2001. The pathophysiology of the intervertebral disc. Joint Bone Spine. 68(6):537–542.
  • Brinckmann P. 1986. Injury of the annulus fibrosus and disc protrusions. An in vitro investigation on human lumbar discs. Spine. 11(2):149–153.
  • Brisby H. 2006. Pathology and possible mechanisms of nervous system response to disc degeneration. J Bone Joint Surg Am. 88(Suppl 2):68–71.
  • Broc GG, Crawford NR, Sonntag VKH, Dickman CA. 1997. Biomechanical effects of transthoracic microdiscectomy. Spine. 22(6):605–612.
  • Calvo-Echenique A, Bashkuev M, Reitmaier S, Pérez-del Palomar A, Schmidt H. 2019. Numerical simulations of bone remodelling and formation following nucleotomy. J Biomech. 88:138–147.
  • Chandran V, Maquer G, Gerig T, Zysset P, Reyes M. 2019. Supervised learning for bone shape and cortical thickness estimation from CT images for finite element analysis. Med Image Anal. 52:42–55. [30471462]
  • Chandran V, Reyes M, Zysset P. 2017. A novel registration-based methodology for prediction of trabecular bone fabric from clinical QCT: a comprehensive analysis. PLoS One. 12(11):e0187874. DOI 10. 1371/journal.pone.0187874
  • Chetoui MA, Boiron O, Ghiss M, Dogui A, Deplano V. 2019. Assessment of intervertebral disc degeneration-related properties using finite element models based on [formula: see text]-weighted MRI data. Biomech Model Mechanobiol. 18(1):17–28.
  • Clerc M, Kennedy J. 2002. The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput. 6(1):58–73.
  • Eberlein R, Holzapfel GA, Fröhlich M. 2004. Multi-segment FEA of the human lumbar spine including the heterogeneity of the annulus fibrosus. Comput Mech. 34(2):147–163.
  • Eberlein R, Holzapfel GA, Schulze-Bauer CAJ. 2001. An anisotropic model for annulus tissue and enhanced finite element analyses of intact lumbar disc bodies. Comput Methods Biomech Biomed Eng. 4(3):209–229.
  • Ellingson AM, Mehta H, Polly DW, Ellermann J, Nuckley DJ. 2013. Disc degeneration assessed by quantitative T2* (T2 Star) correlated with functional lumbar mechanics. Spine. 38(24):E1533–E1540.
  • Fang Q, Boas DA. 2009. Tetrahedral mesh generation from volumetric binary and grayscale images. Proceedings - 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, p. 1142–1145. Boston, Massachusetts: IEEE
  • Frei H, Oxland TR, Rathonyi GC, Nolte LP. 2001. The effect of nucleotomy on lumbar spine mechanics in compression and shear loading. Spine. 26(19):2080–2089.
  • Gédet P, Thistlethwaite PA, Ferguson SJ. 2007. Minimizing errors during in vitro testing of multisegmental spine specimens: considerations for component selection and kinematic measurement. J Biomech. 40(8):1881–1885.
  • Gilbertson LG, Goel VK, Kong WZ, Clausen JD. 1995. Finite element methods in spine biomechanics research. Crit Rev Biomed Eng. 23(5-6):411–473. v23.i5-6.20
  • Goel VK, Nishiyama K, Weinstein JN, Liu YK. 1986. Mechanical properties of lumbar spinal motion segments as affected by partial disc removal. Spine. 11(10):1008–1012.
  • Heuer F, Schmidt H, Wilke HJ. 2008. Stepwise reduction of functional spinal structures increase disc bulge and surface strains. J Biomech. 41(9):1953–1960. 2008.03.023
  • Holzapfel GA, Gasser TC, Ogden RW. 2000. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast. 61(1/3):1–48. DOI 10.1023/A:1010835316564.
  • Holzapfel GA, Schulze-Bauer CAJ, Feigl G, Regitnig P. 2005. Single lamellar mechanics of the human lumbar anulus fibrosus. Biomech Model Mechanobiol. 3(3):125–140.
  • Hongo M, Gay RE, Hsu JT, Zhao KD, Ilharreborde B, Berglund LJ, An KN. 2008. Effect of multiple freeze-thaw cycles on intervertebral dynamic motion characteristics in the porcine lumbar spine. J Biomech. 41(4):916–920.
  • Humzah MD, Soames RW. 1988. Human intervertebral disc: structure and function. The Anatomical Record. 220(4):337–356. DOI 10.1002/ar.1092200402
  • Iatridis JC, Ap Gwynn I. 2004. Mechanisms for mechanical damage in the intervertebral disc annulus fibrosus. J Biomech. 37(8):1165–1175.
  • Johannessen W, Cloyd JM, O'Connell GD, Vresilovic EJ, Elliott DM. 2006. Trans-endplate nucleotomy increases deformation and creep response in axial loading. Ann Biomed Eng. 34(4):687–696.
  • Johnstone B, Bayliss MT. 1995. The large proteoglycans of the human intervertebral disc. Changes in their biosynthesis and structure with age, topography, and pathology. Spine. 20(6):674–684.
  • Keller TS, Spengler DM, Hansson TH. 1987. Mechanical behavior of the human lumbar spine. I. Creep analysis during static compressive loading. J Orthop Res. 5(4):467–478.
  • Lafage V, Gangnet N, Sénégas J, Lavaste F, Skalli W. 2007. New interspinous implant evaluation using an in vitro biomechanical study combined with a finite-element analysis. Spine. 32(16):1706–1713.
  • Maquer G, Laurent M, Brandejsky V, Pretterklieber ML, Zysset PK. 2014. Finite element based nonlinear normalization of human lumbar intervertebral disc stiffness to account for its morphology. J Biomech Eng. 136(6):061–003.
  • Maquer G, Schwiedrzik J, Huber G, Morlock MM, Zysset PK. 2015. Compressive strength of elderly vertebrae is reduced by disc degeneration and additional flexion. J Mech Behav Biomed Mater. 42(325230):54–66.
  • Meakin JR, Hukins DWL. 2000. Effect of removing the nucleus pulposus on the deformation of the annulus fibrosus during compression of the intervertebral disc. J Biomech. 33(5):575–580.
  • Meakin JR, Redpath TW, Hukins DWL. 2001. The effect of partial removal of the nucleus pulposus from the intervertebral disc on the response of the human annulus fibrosus to compression. Clin Biomech. 16(2):121–128.
  • Nolan DR, Gower AL, Destrade M, Ogden RW, McGarry JP. 2014. A robust anisotropic hyperelastic formulation for the modelling of soft tissue. J Mech Behav Biomed Mater. 39:48–60.
  • Otsu N. 1979. A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern. 9(1):62–66.
  • Pezowicz C. 2010. Analysis of selected mechanical properties of intervertebral disc annulus fibrosus in macro and microscopic scale. J Theor Appl Mech. 48(1954):917–932.
  • Pfirrmann CWA, Metzdorf A, Zanetti M, Hodler J, Boos N. 2001. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine. 26(17):1873–1878.
  • Race A, Broom ND, Robertson P. 2000. Effect of loading rate and hydratation on the mechanical properties of the disc. Spine. 25(6):662–669.
  • Roughley PJ. 2004. Biology of intervertebral disc aging and degeneration: involvement of the extracellular matrix. Spine. 29(23):2691–2699. DOI 10.1097/01.brs.0000146101.53784.b1
  • Saleem S, Aslam HM, Rehmani MAK, Raees A, Alvi AA, Ashraf J. 2013. Lumbar disc degenerative disease: disc degeneration symptoms and magnetic resonance image findings. Asian Spine J. 7(4):322–334.
  • Schmidt H, Galbusera F, Rohlmann A, Shirazi-Adl A. 2013. What have we learned from finite element model studies of lumbar intervertebral discs in the past four decades? J Biomech. 46(14):2342–2355.
  • Seroussi RE, Krag MH, Muller DL, Pope MH. 1989. Internal deformations of intact and denucleated human lumbar discs subjected to compression, flexion, and extension loads. J Orthop Res. 7(1):122–131.
  • Showalter BL, Malhotra NR, Vresilovic EJ, Elliott DM. 2014. Nucleotomy reduces the effects of cyclic compressive loading with unloaded recovery on human intervertebral discs. J Biomech. 47(11):2633–2640.
  • Stadelmann MA, Maquer G, Voumard B, Grant A, Hackney DB, Vermathen P, Alkalay RN, Zysset PK. 2018. Integrating MRI-based geometry, composition and fiber architecture in a finite element model of the human intervertebral disc. J Mech Behav Biomed Mater. 85:37–42.
  • Vernon-Roberts B. 1980. The pathology and interrelation of intervertebral disc lesions, osteoarthrosis of the apophyseal joints, lumbar spondylosis and low back pain. The lumbar spine and backpain. 2nd ed. Tunbridge: Pitman Medical Publishing.
  • Vresilovic EJ, Johannessen W, Elliott DM. 2006. Disc mechanics with trans-endplate partial nucleotomy are not fully restored following cyclic compressive loading and unloaded recovery. J Biomech Eng. 128(6):823–829.
  • White M, Panjabi A. 1990. Clinical biomechanics of the spine. 2nd ed., vol. 2. Philadelphia: Lippincott, p. 18–20.
  • Wilke HJ, Jungkunz B, Wenger K, Claes LE. 1998. Spinal segment range of motion as a function of in vitro test conditions: Effects of exposure period, accumulated cycles, angular- deformation rate, and moisture condition. Anat Rec. 251(1):15–19. 251:1⟨15::AID-AR4⟩3.0.CO;2-D
  • Wilke HJ, Kavanagh S, Neller S, Claes L. 2002. Effect of artificial disk nucleus implant on mobility and intervertebral disk high of an L4/5 segment after nucleotomy. Orthopade. 31(5):434–440.
  • Yang B, O’Connell GD. 2019. Intervertebral disc swelling maintains strain homeostasis throughout the annulus fibrosus: a finite element analysis of healthy and degenerated discs. Acta Biomater. 100:61–74.
  • Yang H, Liu H, Li Z, Zhang K, Wang J, Wang H, Zheng Z. 2015. Low back pain associated with lumbar disc herniation: role of moderately degenerative disc and annulus fibrous tears. Int J Clin Exp Med. 8(2):1634–1644.