831
Views
13
CrossRef citations to date
0
Altmetric
Articles

Numerical simulation of deformed red blood cell by utilizing neural network approach and finite element analysis

, , , &
Pages 1190-1200 | Received 21 Dec 2019, Accepted 01 Jul 2020, Published online: 10 Aug 2020

References

  • Abavisani M, Patel VM. 2018. Deep multimodal subspace clustering networks. IEEE J Sel Top Signal Process. 12(6):1601–1614.
  • Barns S, Balanant MA, Sauret E, Flower R, Saha S, Gu Y. 2017. Investigation of red blood cell mechanical properties using AFM indentation and coarse-grained particle method. Biomed Eng Online. 16(1):140–121.
  • Becton M, Averett RD, Wang XQ. 2019. Flow plate separation of cells based on elastic properties: a computational study. Biomech Model Mechanobiol. 18(2):425–433.
  • Bremmell KE, Evans A, Prestidge CA. 2006. Deformation and nano-rheology of red blood cells: an AFM investigation. Colloids Surf B Biointerfaces. 50(1):43–48.
  • Chen S. 1987. Red cell deformability and its relevance to blood flow. Ann Rev Physiol. 49:177–192. doi:10.1146/annurev.ph.49.030187.001141
  • Ciasca G, Papi M, Di Claudio S, Chiarpotto M, Palmieri V, Maulucci G, Nocca G, Rossi C, De Spirito M. 2015. Mapping viscoelastic properties of healthy and pathological red blood cells at the nanoscale level. Nanoscale. 7(40):17030–17037.
  • Dao M, Lim CT, Suresh S. 2005. Mechanics of the human red blood cell deformed by optical tweezers. J Mech Phys Solids. 53(2):493–494.
  • Dimitriadis EK, Horkay F, Maresca J, Kachar B, Chadwick RS. 2002. Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys J. 82(5):2798–2810.
  • Ding Y, Xu GK, Wang GF. 2017. On the determination of elastic moduli of cells by AFM based indentation. Sci Rep. 7:45575.
  • Ding Y, Wang J, Xu G-K, Wang G-F. 2018. Are elastic moduli of biological cells depth dependent or not? Another explanation using a contact mechanics model with surface tension]. Soft Matter. 14(36):7534–7541.
  • Dulińska I, Targosz M, Strojny W, Lekka M, Czuba P, Balwierz W, Szymoński M. 2006. Stiffness of normal and pathological erythrocytes studied by means of atomic force microscopy. J Biochem Biophys Methods. 66(1–3):1–11.
  • Eggleton CD, Popel AS. 1998. Large deformation of red blood cell ghosts in a simple shear flow. Phys Fluids (1994). 10(8):1834–1845.
  • Evans E, Fung YC. 1972. Improved measurements of the erythrocyte geometry. Microvasc Res. 4(4):335–347.
  • Farabet C, Couprie C, Najman L, Lecun Y. 2013. Learning hierarchical features for scene labeling. IEEE Trans Pattern Anal Mach Intell. 35(8):1915–1929.
  • Fischer TM. 2004. Shape memory of human red blood cells. Biophys J. 86(5):3304–3313.
  • Girasole M, Dinarelli S, Boumis G. 2012. Structure and function in native and pathological erythrocytes: a quantitative view from the nanoscale. Micron. 43(12):1273–1286.
  • Geekiyanage NM, Balanant MA, Sauret E, Saha S, Flower R, Lim CT, Gu Y. 2019. A coarse-grained red blood cell membrane model to study stomatocyte-discocyte-echinocyte morphologies. PLoS One. 14(4):e0215447.
  • Hategan A, Law R, Kahn S, Discher DE. 2003. Adhesively-tensed cell membrane: lysis kinetics and atomic force microscopy probing. Biophys J. 85(4):2746–2859.
  • Hategan A, Sengupta K, Kahn S, Sackmann E, Discher DE. 2004. Topographical pattern dynamics in passive adhesion of cell membranes. Biophys J. 87(5):3547–3560.
  • Hochmuth RM, Waugh RE. 1987. Erythrocyte membrane elasticity and viscosity. Annu Rev Physiol. 49(1):209–219.
  • Kloppel T, Wall WA. 2011. A novel two-layer, coupled finite element approach for modeling the nonlinear elastic and viscoelastic behavior of human erythrocytes. Biomech Model Mechanobiol. 10(4):445–459.
  • Kyle-Davidson CP, Clark AF. 2018. Neural network components for evolved vision systems. 2018 In: 10th Computer Science and Electronic Engineering Conference (CEEC); p. 202–207, Colchester.
  • LeCun Y, Bengio Y, Hinton G. 2015. Deep learning. Nature. 521(7553):436–444.
  • Lekka M, Fornal M, Pyka-Fościak G, Lebed K, Wizner B, Grodzicki T, Styczeń J. 2005. Erythrocyte stiffness probed using atomic force microscope. Biorheology. 42(4):307–317.
  • Li J-c, Zhao D-l, Ge B-F, Yang K-W, Chen Y-W. 2018. A link prediction method for heterogeneous networks based on BP neural network. Phys A Stat Mech Appl. 495:1–17.
  • Li M, Liu L, Xi N, Wang Y, Dong Z, Xiao X, Zhang W. 2012. Atomic force microscopy imaging and mechanical properties measurement of red blood cells and aggressive cancer cells. Sci China Life Sci. 55(11):968–973.
  • Lim CT, Dao M, Suresh S, Sow CH, Chew KT. 2004. Large deformation of living cells using laser traps. Acta Mater. 52(7):1837–1845.
  • Liu J, Zhang F, Zhu L, Chu D, Qu X. 2019. Mechanical properties of RBCs under oxidative stress measured by optical tweezers. Opt Commun. 442:56–59.
  • Lusci A, Pollastri G, Baldi P. 2013. Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules. J Chem Inf Model. 53(7):1563–1585.
  • Maciaszek JL, Lykotrafitis G. 2011. Sickle cell trait human erythrocytes are significantly stiffer than normal. J Biomech. 44(4):657–661.
  • Melzak KA, Lázaro GR, Hernández-Machado A, Pagonabarraga I, Cárdenas Díaz de Espada JM, Toca-Herrera JL. 2012. AFM measurements and lipid rearrangements: evidence from red blood cell shape changes. Soft Matter. 8(29):7716–7726.
  • Mohandas N, Chasis JA. 1993. Red blood cell deformability, membrane material properties and shape: regulation by transmembrane, skeletal and cytosolic proteins and lipids. Semin Hematol. 30(3):171–192.
  • Mohandas N, Gallagher PG. 2008. Red cell membrane: past, present, and future. Blood. 112(10):3939–3948.
  • Pozrikidis C. 2003. Numerical simulation of the flow-induced deformation of red blood cells. Ann Biomed Eng. 31(10):1194–1205.
  • Qin Y, Li Y, Zhang L-Y, Xu G-K. 2020. Stochastic fluctuation-induced cell polarization on elastic substrates: a cytoskeleton-based mechanical model. J Mech Phys Solids. 137:103872.
  • Sainath TN, Mohamed AR, Kingsbury B, Ramabhadran B. 2013. Deep convolutional neural networks for LVCSR 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. (ICASSP); p. 8614–8618, Vancouver.
  • Schmidhuber J. 2015. Deep learning in neural networks: an overview. Neural Netw. 61:85–117.
  • Seo B, Shin M, Mo YJ, Kim J. 2018. Top-down parsing for neural network exchange format (NNEF) in tensorflow-based deep learning computation. In: 2018 32nd International conference on information networking (ICOIN); p. 522–524, Chiang Mai.
  • Shi H, Xu MH, Li R. 2018. Deep learning for household load forecasting-a novel pooling deep RNN. IEEE Trans Smart Grid. 9(5):5271–5280.
  • Suresh S, Spatz J, Mills JP, Micoulet A, Dao M, Lim CT, Beil M, Seufferlein T. 2015. Reprint of: connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta Biomater. 23:S3–S15.
  • Xu D, Kaliviotis E, Munjiza A, Avital E, Ji C, Williams J. 2013. Large scale simulation of red blood cell aggregation in shear flows. J Biomech. 46(11):1810–1817.
  • Xu GK, Feng XQ, Gao H. 2018. Orientations of cells on compliant substrates under biaxial stretches: a theoretical study. Biophys J. 114(3):701–710.
  • Xu G-K, Li B, Feng X-Q, Gao H. 2016. A tensegrity model of cell reorientation on cyclically stretched substrates. Biophys J. 111(7):1478–1486.
  • Xu G-K, Yang C, Du J, Feng X-Q. 2014. Integrin activation and internalization mediated by extracellular matrix elasticity: a biomechanical model. J Biomech. 47(6):1479–1484.
  • Yoon D, You D. 2016. Continuum modeling of deformation and aggregation of red blood cells. J Biomech. 49(11):2267–2279.
  • Zhang JF, Johnson PC, Popel AS. 2008. Red blood cell aggregation and dissociation in shear flows simulated by lattice Boltzmann method. J Biomech. 41(1):47–55.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.