171
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Prediction of RNA secondary structure based on stem region replacement using the RSRNA algorithm

, , , , , & show all
Pages 101-114 | Received 17 Oct 2019, Accepted 18 Aug 2020, Published online: 09 Sep 2020

References

  • Aigner A, Fischer D. 2016. Nanoparticle-mediated delivery of small RNA molecules in tumor therapy. Pharmazie. 71(1):27–34.
  • Baldi P, Brunak S, Chauvin Y, Andersen CA, Nielsen H. 2000. Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics. 16(5):412–424.
  • Benhlima S, Fatmi AE, Chentoufi A, Bekri MA, Sabbane M. 2017. A heuristic algorithm for RNA secondary structure based on genetic algorithm. 2017 Intelligent Systems and Computer Vision (ISCV), Fez, pp. 1–7.
  • Blum B, Bakalara N, Simpson L. 1990. A model for RNA editing in kinetoplastid mitochondria: RNA molecules transcribed from maxicircle DNA provide the edited information. Cell. 60(2):189–198.
  • Cao Y, Cui Z. 2014. RNA secondary structure prediction based on binary-coded centroid bat algorithm. J Bionanosci. 8(5):364–367.
  • Cech TR. 1993. Catalytic RNA: structure and mechanism. Biochem Soc Trans. 21(2):229–234.
  • Che YQ, Cao Q, Tang Z. 2006. An efficient method based on Hopfield neural network for RNA secondary structure prediction. Int J Soft Comput. 1(1):61–66.
  • Ding Y, Chan CY, Lawrence CE. 2004. Sfold web server for statistical folding and rational design of nucleic acids. Nucleic Acids Res. 32(Web Server issue):W135–W141.
  • Engelen S, Tahi F. 2007. Predicting RNA secondary structure by the comparative approach: how to select the homologous sequences. BMC Bioinformatics. 8:464.
  • Ganjtabesh M, Zare-Mirakabad F, Nowzari-Dalini A. 2013. Inverse RNA folding solution based on multi-objective genetic algorithm and Gibbs sampling method. Excli J. 12:546–555.
  • Gardner PP, Giegerich R. 2004. A comprehensive comparison of comparative RNA structure prediction approaches. BMC Bioinformatics. 5:140.
  • Hicks J, Liu HC. 2013. Involvement of eukaryotic small RNA pathways in host defense and viral pathogenesis. Viruses. 5(11):2659–2678.
  • Hofacker IL. 2003. Vienna RNA secondary structure server. Nucleic Acids Res. 31(13):3429–3431.
  • Jing Z, Jinling N, Yong Z. 2018. Prediction of concentrate grade and recovery rate of tailings in the process of production based on chaotic ant colony algorithm. 2018 Chinese Control and Decision Conference (CCDC), Shenyang, pp. 5308–5313.
  • Koessler DR, Knisley DJ, Knisley J, Haynes T. 2010. A predictive model for secondary RNA structure using graph theory and a neural network. BMC Bioinformatics. 11(Suppl 6):S21.
  • Lapointe CP, Wickens M. 2018. RNA tagging: preparation of high-throughput sequencing libraries. Methods Mol Biol. 1649:455–471.
  • Li J, Xu C, Liang H, Cong W, Wang Y, Luan K, Liu Y. 2017. RGRNA: prediction of RNA secondary structure based on replacement and growth of stems. Comput Methods Biomech Biomed Engin. 20(12):1261–1272.
  • Mane SP, Modise T, Sobral BW. 2011. Analysis of high-throughput sequencing data. Methods Mol Biol. 678:1–11.
  • Marton S, Reyes-Darias JA, Sanchez-Luque FJ, Romero-Lopez C, Berzal-Herranz A. 2010. In vitro and ex vivo selection procedures for identifying potentially therapeutic DNA and RNA molecules. Molecules. 15(7):4610–4638.
  • Mathews DH, Disney MD, Childs JL, Schroeder SJ, Zuker M, Turner DH. 2004. Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc Natl Acad Sci U S A. 101(19):7287–7292.
  • Michalak P, Soszynska-Jozwiak M, Biala E, Moss WN, Kesy J, Szutkowska B, Lenartowicz E, Kierzek R, Kierzek E. 2019. Secondary structure of the segment 5 genomic RNA of influenza A virus and its application for designing antisense oligonucleotides. Sci Rep. 9(1):3801.
  • Müller S. 2017. Special issue: ribozymes and RNA catalysis. Molecules. 22(5):789.
  • Pucker B, Schilbert HM, Schumacher SF. 2019. Integrating molecular biology and bioinformatics education. J Integr Bioinform. 16(3):20190005.
  • Shen Y, Yu X, Zhu L, Li T, Yan Z, Guo J. 2018. Transfer RNA-derived fragments and tRNA halves: biogenesis, biological functions and their roles in diseases. J Mol Med. 96(11):1167–1176.
  • Smyth RP, Despons L, Huili G, Bernacchi S, Hijnen M, Mak J, Jossinet F, Weixi L, Paillart J-C, von Kleist M, et al. 2015. Mutational interference mapping experiment (MIME) for studying RNA structure and function. Nat Methods. 12(9):866–872.,
  • Srikamdee S, Wattanapornprom W, Chongstitvatana P. 2016. RNA secondary structure prediction with coincidence algorithm. 16th International Symposium on Communications and Information Technologies (ISCIT), Qingdao, pp. 686–690.
  • Sunkavalli U, Aguilar C, Silva RJ, Sharan M, Cruz AR, Tawk C, Maudet C, Mano M, Eulalio A. 2017. Analysis of host microRNA function uncovers a role for miR-29b-2-5p in Shigella capture by filopodia. PLoS Pathog. 13(4):e1006327.
  • Van Den Born E, Gultyaev AP, Snijder EJ. 2004. Secondary structure and function of the 5'-proximal region of the equine arteritis virus RNA genome. RNA. 10(3):424–437.
  • Walter AE, Turner DH, Kim J, Lyttle MH, Müller P, Mathews DH, Zuker M. 1994. Coaxial stacking of helixes enhances binding of oligoribonucleotides and improves predictions of RNA folding. Proc Natl Acad Sci U S A. 91(20):9218–9222.
  • Waterman MS, Smith TF. 1978. RNA secondary structure: a complete mathematical analysis. Math Biosci. 42(3–4):257–266.
  • Wenz C, Enenkel B, Amacker M, Kelleher C, Damm K, Lingner J. 2001. Human telomerase contains two cooperating telomerase RNA molecules. EMBO J. 20(13):3526–3534.
  • Yoshimura H, Matsuda Y, Yamamoto M, Kamiya S, Ishiwata T. 2018. Expression and role of long non-coding RNA H19 in carcinogenesis. Front Biosci (Landmark Ed). 23:614–625.
  • Zhu Y, Xie Z, Li Y, Zhu M, Chen YP. 2018. Research on folding diversity in statistical learning methods for RNA secondary structure prediction. Int J Biol Sci. 14(8):872–882.
  • Zuker M, Stiegler P. 1981. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 9(1):133–148.
  • Zuker M. 2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31(13):3406–3415.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.