653
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Muscle co-contraction in an upper limb musculoskeletal model: EMG-assisted vs. standard load-sharing

, , , , &
Pages 137-150 | Received 01 Apr 2019, Accepted 21 Aug 2020, Published online: 14 Oct 2020

References

  • Arnold EM, Ward SR, Lieber RL, Delp SL. 2010. A model of the lower limb for analysis of human movement. Ann Biomed Eng. 38(2):269–279.
  • Baruh H. 1999. Analytical dynamics. Boston (MA): WCB/McGraw-Hill,
  • Bergmann G, Graichen F, Bender A, Rohlmann A, Halder A, Beier A, Westerhoff P. 2011. In vivo gleno-humeral joint loads during forward flexion and abduction. J Biomech. 44(8):1543–1552.
  • Boyd S, Vandenberghe L. 2004. Convex optimization. Cambridge, UK: Cambridge University Press.
  • Brookham RL, Middlebrook EE, Grewal T-j, Dickerson CR. 2011. The utility of an empirically derived co-activation ratio for muscle force prediction through optimization. J Biomech. 44(8):1582–1587.
  • Cholewicki J, McGill SM, Norman RW. 1995. Comparison of muscle forces and joint load from an optimization and emg assisted lumbar spine model: towards development of a hybrid approach. J Biomech. 28(3):321–331.
  • Collins J. 1995. The redundant nature of locomotor optimization laws. J Biomech. 28(3):251–267.
  • Crowninshield RD, Brand RA. 1981. A physiologically based criterion of muscle force prediction in locomotion. J Biomech. 14(11):793–801.
  • Dennerlein JT. 2005. Finger flexor tendon forces are a complex function of finger joint motions and fingertip forces. J Hand Ther. 18(2):120–127.
  • Engelhardt C, Malfroy Camine V, Ingram D, Müllhaupt P, Farron A, Pioletti D, Terrier A. 2015. Comparison of an emg-based and a stress-based method to predict shoulder muscle forces. Comput Methods Biomech Biomed Eng. 18(12):1272–1279.
  • Erdemir A, McLean S, Herzog W, van den Bogert AJ. 2007. Model-based estimation of muscle forces exerted during movements. Clin Biomech (Bristol, Avon)). 22(2):131–154.
  • Favre P, Sheikh R, Fucentese SF, Jacob HA. 2005. An algorithm for estimation of shoulder muscle forces for clinical use. Clin Biomech (Bristol, Avon)). 20(8):822–833.
  • Favre P, Snedeker JG, Gerber C. 2009. Numerical modelling of the shoulder for clinical applications. Philos Trans A Math Phys Eng Sci. 367(1895):2095–2118.
  • Fiacco AV. 1976. Sensitivity analysis for nonlinear programming using penalty methods. Math Program. 10(1):287–311.
  • Forster E, Simon U, Augat P, Claes L. 2004. Extension of a state-of-the-art optimization criterion to predict co-contraction. J Biomech. 37(4):577–581.
  • Gagnon D, Arjmand N, Plamondon A, Shirazi-Adl A, Larivière C. 2011. An improved multi-joint emg-assisted optimization approach to estimate joint and muscle forces in a musculoskeletal model of the lumbar spine. J Biomech. 44(8):1521–1529.
  • Garner BA, Pandy MG. 2000. The obstacle-set method for representing muscle paths in musculoskeletal models. Comput Methods Biomech Biomed Eng. 3(1):1–30.
  • Garner BA, Pandy MG. 2001. Musculoskeletal model of the upper limb based on the visible human male dataset. Comput Methods Biomech Biomed Engin. 4(2):93–126.
  • Garner BA, Pandy MG. 2003. Estimation of musculotendon properties in the human upper limb. Ann Biomed Eng. 31(2):207–220.
  • Herzog W. 1996. Force-sharing among synergistic muscles: theoretical considerations and experimental approaches. Exerc Sport Sci Rev. 24(1):173–202.
  • Hug F. 2011. Can muscle coordination be precisely studied by surface electromyography. J Electromyogr Kinesiol. 21(1):1–12.
  • Ingram D, Engelhardt C, Farron A, Terrier A, Müllhaupt P. 2016. Modelling of the human shoulder as a parallel mechanism without constraints. Mech Mach Theory. 100:120–137.
  • Ingram D. 2015. Musculoskeletal model of the human shoulder for joint force estimation. Ph.D. Thesis, Ecole Polytechnique Fédérale de Lausanne. doi:10.5075/epfl-thesis-6497.
  • Jost B, Pfirrmann CW, Gerber C. 2000. Clinical outcome after structural failure of rotator cuff repairs. JBJS. 82(3):304–314.
  • Labriola JE, Lee TQ, Debski RE, McMahon PJ. 2005. Stability and instability of the glenohumeral joint: the role of shoulder muscles. J Shoulder Elbow Surg. 14(1):S32–S38.
  • Langenderfer J, LaScalza S, Mell A, Carpenter JE, Kuhn JE, Hughes RE. 2005. An emg-driven model of the upper extremity and estimation of long head biceps force. Comput Biol Med. 35(1):25–39.
  • Laursen B, Jensen BR, Németh G, Sjøgaard G. 1998. A model predicting individual shoulder muscle forces based on relationship between electromyographic and 3d external forces in static position. J Biomech. 31(8):731–739.
  • Matsui K, Shimada K, Andrew PD. 2006. Deviation of skin marker from bone target during movement of the scapula. J Orthop Sci. 11(2):180–184.
  • Nikooyan A, Veeger H, Westerhoff P, Bolsterlee B, Graichen F, Bergmann G, Van der Helm F. 2012. An emg-driven musculoskeletal model of the shoulder. Human Movement Sci. 31(2):429–447.
  • Pagnani MJ, Deng X-H, Warren RF, Torzilli PA, O'Brien SJ. 1996. Role of the long head of the biceps brachii in glenohumeral stability: a biomechanical study in cadavera. Journal of Shoulder and Elbow Surgery. 5(4):255–262.
  • Prinold JA, Masjedi M, Johnson GR, Bull AM. 2013. Musculoskeletal shoulder models: a technical review and proposals for research foci. Proc Inst Mech Eng H. 227(10):1041–1057.
  • Raikova R. 1999. About weight factors in the non-linear objective functions used for solving indeterminate problems in biomechanics. J Biomech. 32(7):689–694.
  • Sarshari E, Farron A, Terrier A, Pioletti D, Mullhaupt P. 2017. A simulation framework for humeral head translations. Med Eng Phys. 49:140–147.
  • Sarshari E. 2018. A closed-loop EMG-assisted shoulder model. Ph.D. Thesis, Ecole Polytechnique Fédérale de Lausanne. doi:10.5075/epfl-thesis-8658.
  • Siciliano B, Khatib O. 2008. Springer handbook of robotics. Berlin: Springer-Verlag, ISBN: 978-3-540-23957-4.
  • Steenbrink F, De Groot J, Veeger H, van der Helm F, Rozing P. 2009. Glenohumeral stability in simulated rotator cuff tears. J Biomech. 42(11):1740–1745.
  • Terrier A, Aeberhard M, Michellod Y, Mullhaupt P, Gillet D, Farron A, Pioletti DP. 2010. A musculoskeletal shoulder model based on pseudo-inverse and null-space optimization. Med Eng Phys. 32(9):1050–1056.
  • Van der Helm FC, Veenbaas R. 1991. Modelling the mechanical effect of muscles with large attachment sites: application to the shoulder mechanism. J Biomech. 24(12):1151–1163.
  • Van der Helm FC. 1994. Analysis of the kinematic and dynamic behavior of the shoulder mechanism. J Biomech. 27(5):527–550.
  • Veeger H, Van Der Helm F. 2007. Shoulder function: the perfect compromise between mobility and stability. J Biomech. 40(10):2119–2129.
  • Winter DA. 2009. Biomechanics and motor control of human movement. John Wiley & Sons.
  • Winters JM, Stark L. 1987. Muscle models: what is gained and what is lost by varying model complexity. Biol Cybern. 55(6):403–420.
  • Wu G, Van der Helm FC, Veeger HD, Makhsous M, Van Roy P, Anglin C, Nagels J, Karduna AR, McQuade K, Wang X, International Society of Biomechanics, et al. 2005. Isb recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion-Part II: shoulder, elbow, wrist and hand. J Biomech. 38(5):981–992.
  • Yanagawa T, Goodwin CJ, Shelburne KB, Giphart JE, Torry MR, Pandy MG. 2008. Contributions of the individual muscles of the shoulder to glenohumeral joint stability during abduction. J Biomech Eng. 130(2):021024
  • Zajac FE. 1989. Muscle and tendon properties models scaling and application to biomechanics and motor. Crit Rev Biomed Eng. 17(4):359–411.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.