214
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Oxygen transport in a permeable model of abdominal aortic aneurysm

, &
Pages 215-229 | Received 27 Jun 2020, Accepted 05 Sep 2020, Published online: 22 Sep 2020

References

  • Adolph R, Vorp DA, Steed DL, Webster MW, Kameneva MV, Watkins SC. 1997. Cellular content and permeability of intraluminal thrombus in abdominal aortic aneurysm. J Vasc Surg. 25(5):916–926.
  • Aggarwal S, Qamar A, Sharma V, Sharma A. 2011. Abdominal aortic aneurysm: a comprehensive review. Exp Clin Cardiol. 16(1):11–15. eng.
  • Ameenuddin M, Anand M. 2020. A mixture theory model for blood combined with low-density lipoprotein transport to predict early atherosclerosis regions in idealized and patient-derived abdominal aorta. J Biomech Eng. 142(10):101008 (13 pages).
  • Ayyalasomayajula A, Vande Geest JP, Simon BR. 2010. Porohyperelastic finite element modeling of abdominal aortic aneurysms. J Biomech Eng. 132(10):104502eng.
  • Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Das SR, On behalf of the American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee, et al. 2019. Heart disease and stroke Statistics-2019 update a report from the American Heart Association. Circulation. 139(10):e56–e528.
  • Budwig R, Elger D, Hooper H, Slippy J. 1993. Steady flow in abdominal aortic aneurysm models. J Biomech Eng. 115(4A):418–423.
  • Buerk DG, Goldstick TK. 1982. Arterial wall oxygen consumption rate varies spatially. Am J Physiol. 243(6):H948–H958.
  • Buerk DG, Goldstick TK. 1986. Oxygen tension changes in the outer vascular wall supplied by vasa vasorum following adenosine and epinephrine. Blood Vessels. 23(1):9–21.
  • Caputo M, Chiastra C, Cianciolo C, Cutri E, Dubini G, Gunn J, Keller B, Migliavacca F, Zunino P. 2013. Simulation of oxygen transfer in stented arteries and correlation with in-stent restenosis. Int J Numer Method Biomed Eng. 29(12):1373–1387.
  • Coakley MF, Hurt DE, Weber N, Mtingwa M, Fincher EC, Alekseyev V, Chen DT, Yun A, Gizaw M, Swan J, et al. 2014. The NIH 3D print exchange: a public resource for bioscientific and biomedical 3D prints. 3D Print Addit Manuf. 1(3):137–140.
  • Farsad M, Zambrano BA, Baek S. 2015. Data-guided growth and remodeling model of abdominal aortic aneurysm accounting for the bio-chemical effects of intraluminal thrombus. Computational biomechanics for medicine. Cham, Switzerland: Springer; p. 13–23.
  • Fraser KH, Meagher S, Blake JR, Easson WJ, Hoskins PR. 2008. Characterization of an abdominal aortic velocity waveform in patients with abdominal aortic aneurysm. Ultrasound Med Biol. 34(1):73–80.
  • Geest JPV, Wang DH, Wisniewski SR, Makaroun MS, Vorp DA. 2006. Towards a noninvasive method for determination of patient-specific wall strength distribution in abdominal aortic aneurysms. Ann Biomed Eng. 34(7):1098–1106.
  • Grøndal N, Søgaard R, Lindholt JS. 2015. Baseline prevalence of abdominal aortic aneurysm, peripheral arterial disease and hypertension in men aged 65-74 years from a population screening study (VIVA trial). ).Br J Surg. 102(8):902–906.
  • Iannetti L, D'Urso G, Conoscenti G, Cutri E, Tuan RS, Raimondi MT, Gottardi R, Zunino P. 2016. Distributed and lumped parameter models for the characterization of high throughput bioreactors. PloS One. 11(9):e0162774
  • Kemmerling EMC, Peattie RA. 2018. Abdominal aortic aneurysm pathomechanics: current understanding and future directions. Adv Exp Med Biol. 1097:157–179.
  • Kolandavel MK, Fruend ET, Ringgaard S, Walker PG. 2006. The effects of time varying curvature on species transport in coronary arteries. Ann Biomed Eng. 34(12):1820–1832.
  • Koshiba N, Ando J, Chen X, Hisada T. 2007. Multiphysics simulation of blood flow and LDL transport in a porohyperelastic arterial wall model. J Biomech Eng. 129(3):374–385.
  • Kuivaniemi H, Ryer EJ, Elmore JR, Tromp G. 2015. Understanding the pathogenesis of abdominal aortic aneurysms. Expert Rev Cardiovasc Ther. 13(9):975–987.
  • Liu X, Fan Y, Deng X, Zhan F. 2011. Effect of non-Newtonian and pulsatile blood flow on mass transport in the human aorta. J Biomech. 44(6):1123–1131.
  • Ma P, Li X, Ku DN. 1994. Heat and mass transfer in a separated flow region for high Prandtl and Schmidt numbers under pulsatile conditions. Int J Heat Mass Transf. 37(17):2723–2736.
  • Moll FL, Powell JT, Fraedrich G, Verzini F, Haulon S, Waltham M, van Herwaarden JA, Holt PJE, van Keulen JW, Rantner B, et al. 2011. Management of abdominal aortic aneurysms clinical practice guidelines of the European society for vascular surgery. Eur J Vasc Endovasc Surg. 41:S1–S58.
  • Moore JA, Ethier CR. 1997. Oxygen mass transfer calculations in large arteries. J Biomech Eng. 119(4):469–475. eng.
  • Oliver‐Williams C, Sweeting M, Turton G, Parkin D, Cooper D, Rodd C, Thompson S, Earnshaw J, Gloucestershire, Programme SAAAS. 2018. Lessons learned about prevalence and growth rates of abdominal aortic aneurysms from a 25‐year ultrasound population screening programme. Br J Surg. 105(1):68–74.
  • Perktold K, Prosi M, Zunino P. 2009. Mathematical models of mass transfer in the vascular walls. In: Formaggia L, Quarteroni A, Veneziani A, editors. Cardiovascular mathematics: modeling and simulation of the circulatory system. Milano: Springer Milan; p. 243–278.
  • Polzer S, Gasser TC, Markert B, Bursa J, Skacel P. 2012. Impact of poroelasticity of intraluminal thrombus on wall stress of abdominal aortic aneurysms. Biomed Eng Online. 11:62–62.
  • Rappitsch G, Perktold K. 1996. Computer simulation of convective diffusion processes in large arteries. J Biomech. 29(2):207–215.
  • Raptis A, Xenos M, Dimas S, Giannoukas A, Labropoulos N, Bluestein D, Matsagkas MI. 2016. Effect of macroscale formation of intraluminal thrombus on blood flow in abdominal aortic aneurysms. Comput Methods Biomech Biomed Engin. 19(1):84–92.
  • Sakalihasan N, Michel J-B, Katsargyris A, Kuivaniemi H, Defraigne J-O, Nchimi A, Powell JT, Yoshimura K, Hultgren R. 2018. Abdominal aortic aneurysms. Nat Rev Dis Primers. 4(1):1–22.
  • Salman HE, Ramazanli B, Yavuz MM, Yalcin HC. 2019. Biomechanical investigation of disturbed hemodynamics-induced tissue degeneration in abdominal aortic aneurysms using computational and experimental techniques. Front Bioeng Biotechnol. 7:111
  • Schermerhorn M. 2009. A 66-year-old man with an abdominal aortic aneurysm: review of screening and treatment. JAMA. 302(18):2015–2022.
  • Shin I-S, Kim J-M, Kim KL, Jang SY, Jeon E-S, Choi SH, Kim D-K, Suh W, Kim Y-W. 2009. Early growth response factor-1 is associated with intraluminal thrombus formation in human abdominal aortic aneurysm. J Am Coll Cardiol. 53(9):792–799.
  • Simon BR, Gaballa MA. 1988. Finite Strain, Poroelastic Finite Element Models for Large Arterial Cross Sections. Comput Methods Bioeng. 9:325–334.
  • Sonesson B, Länne T, Hansen F, Sandgren T. 1994. Infrarenal aortic diameter in the healthy person. European Journal of Vascular Surgery. 8(1):89–95.
  • Sun N, Leung JH, Wood NB, Hughes AD, Thom SA, Cheshire NJ, Xu XY. 2009. Computational analysis of oxygen transport in a patient-specific model of abdominal aortic aneurysm with intraluminal thrombus. Br J Radiol. 82 Spec No 1Spec No 1:S18–S23.
  • Swedenborg J, Mäyränpää MI, Kovanen PT. 2011. Mast cells: important players in the orchestrated pathogenesis of abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol. 31(4):734–740.
  • Tada S, Tarbell JM. 2001. Fenestral pore size in the internal elastic lamina affects transmural flow distribution in the artery wall. Ann Biomed Eng. 29(6):456–466. eng.
  • Takayama T, Yamanouchi D. 2013. Aneurysmal disease: the abdominal aorta. Surg Clin North Am. 93(4):877–891.
  • Virag L, Wilson JS, Humphrey JD, Karsaj I. 2015. A computational model of biochemomechanical effects of intraluminal thrombus on the enlargement of abdominal aortic aneurysms. Ann Biomed Eng. 43(12):2852–2867.
  • Vorp DA. 2007. Biomechanics of abdominal aortic aneurysm. J Biomech. 40(9):1887–1902. eng.
  • Vorp DA, Lee PC, Wang DH, Makaroun MS, Nemoto EM, Ogawa S, Webster MW. 2001. Association of intraluminal thrombus in abdominal aortic aneurysm with local hypoxia and wall weakening. J Vasc Surg. 34(2):291–299.
  • Vorp D, Mandarino W, Webster M, Gorcsan IIJ. 1996. Potential influence of intraluminal thrombus on abdominal aortic aneurysm as assessed by a new non-invasive method. Cardiovascular Surgery. 4(6):732–739.
  • Vorp D, Wang D, Webster M, Federspiel W. 1998. Effect of intraluminal thrombus thickness and bulge diameter on the oxygen diffusion in abdominal aortic aneurysm. J Biomech Eng. 120(5):579–583.
  • Wang DH, Makaroun MS, Webster MW, Vorp DA. 2002. Effect of intraluminal thrombus on wall stress in patient-specific models of abdominal aortic aneurysm. J Vasc Surg. 36(3):598–604.
  • Wufsus A, Macera N, Neeves K. 2013. The hydraulic permeability of blood clots as a function of fibrin and platelet density. Biophys J. 104(8):1812–1823.
  • Zakerzadeh R, Bukac M, Zunino P. 2016. Computational analysis of energy distribution of coupled blood flow and arterial deformation. Int J Adv Eng Sci Appl Math. 8(1):70–16.
  • Zakerzadeh R, Zunino P. 2016. Numerical modeling of fluid-porous structure interaction in arteries.
  • Zakerzadeh R, Zunino P. 2019. A computational framework for fluid–porous structure interaction with large structural deformation. Meccanica. 54(1-2):101–121.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.