131
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Comparison of dynamic response of three TLIF techniques on the fused and adjacent segments under vibration

&
Pages 308-319 | Received 20 Jun 2020, Accepted 24 Sep 2020, Published online: 13 Oct 2020

References

  • Ambati DV, Wright EK, Lehman RA, Kang DG, Wagner SC, Dmitriev AE. 2015. Bilateral pedicle screw fixation provides superior biomechanical stability in transforaminal lumbar interbody fusion: a finite element study. Spine J. 15(8):1812–1822.
  • Beutler WJ, Peppelman WC. 2003. Anterior lumbar fusion with paired BAK standard and paired BAK proximity cages: subsidence incidence, subsidence factors, and clinical outcome. Spine J. 3(4):289–293.
  • Bovenzi M, Schust M, Mauro M. 2017. An overview of low back pain and occupational exposures to whole-body vibration and mechanical shocks. Med Lav. 108(6):419–433.
  • Bovenzi M, Schust M, Menzel G, Prodi A, Mauro M. 2015. Relationships of low back outcomes to internal spinal load: a prospective cohort study of professional drivers. Int Arch Occup Environ Health. 88 (4):487–499.
  • Burström L, Nilsson T, Wahlström J. 2015. Whole-body vibration and the risk of low back pain and sciatica: a systematic review and meta-analysis. Int Arch Occup Environ Health. 88(4):403–418.
  • Bylski-Austrow DI, Glos DL, Wall EJ, Crawford AH. 2018. Scoliosis vertebral growth plate histomorphometry: comparisons to controls, growth rates, and compressive stresses. J Orthop Res. 36(9):2450–2459.
  • Bylski-Austrow DI, Wall EJ, Rupert MP, Roy DR, Crawford AH. 2001. Growth plate forces in the adolescent human knee: a radiographic and mechanical study of epiphyseal staples. J Pediatr Orthop. 21(6):817–823.
  • Chatham LS, Patel VV, Yakacki CM, Carpenter RD. 2017. Interbody spacer material properties and design conformity for reducing subsidence during lumbar interbody fusion. J Biomech. Eng. 139:1–8.
  • Chen CS, Cheng CK, Liu CL. 2002. A biomechanical comparison of posterolateral fusion and posterior fusion in the lumbar spine. J Spinal Disord Tech. 15(1):53–63.
  • Chen F, Gatea S, Ou H, Lu B, Long H. 2016. Fracture characteristics of PEEK at various stress triaxialities. J Mech Behav Biomed Mater. 64:173–186.
  • Cheung KMC, Karppinen J, Chan D, Ho DWH, Song YQ, Sham P, Cheah KSE, Leong JCY, Luk KDK. 2009. Prevalence and pattern of lumbar magnetic resonance imaging changes in a population studyof one thousand forty-three individuals. Spine. 34(9):934–940.
  • Chiang MF, Zhong ZC, Chen CS, Cheng CK, Shih SL. 2006. Biomechanical comparison of instrumented posterior lumbar interbody fusion with one or two cages by finite element analysis. Spine. 31(19):E682–E689.
  • Cho W, Wu C, Mehbod AA, Transfeldt EE. 2008. Comparison of cage designs for transforaminal lumbar interbody fusion: a biomechanical study. Clin Biomech (Bristol, Avon). 23(8):979–985.
  • Cole CD, McCall TD, Schmidt MH, Dailey AT. 2009. Comparison of low back fusion techniques: transforaminal lumbar interbody fusion (TLIF) or posterior lumbar interbody fusion (PLIF) approaches. Curr Rev Musculoskelet Med. 2(2):118–126.
  • Corniola MV, Jagersberg M, Stienen MN, Gautschi OP. 2015. Complete cage migration/subsidence into the adjacent vertebral body after posterior lumbar interbody fusion. J Clin Neurosci. 22(3):597–598.
  • Dickerson DA, Sander EA, Nauman EA. 2008. Modeling the mechanical consequences of vibratory loading in the vertebral body: microscale effects. Biomech Model Mechanobiol. 7(3):191–202.
  • Drain O, Lenoir T, Dauzac C, Rillardon L, Guigui P. 2008. [Influence of disc height on outcome of posterolateral fusion]. Rev Chir Orthop Reparatrice Appar Mot. 94(5):472–480.
  • Dreischarf M, Zander T, Shirazi-Adl A, Puttlitz CM, Adam CJ, Chen CS, Goel VK, Kiapour A, Kim YH, Labus KM, et al. 2014. Comparison of eight published static finite element models of the intact lumbar spine: predictive power of models improves when combined together. J Biomech. 47(8):1757–1766.
  • Faizan A, Kiapour A, Kiapour AM, Goel VK. 2014. Biomechanical analysis of various footprints of transforaminal lumbar interbody fusion devices. J Spinal Disord Tech. 27(4):E118–E127.
  • Fan W, Guo LX. 2018. Finite element investigation of the effect of nucleus removal on vibration characteristics of the lumbar spine under a compressive follower preload. J Mech Behav Biomed Mater. 78:342–351.
  • Fan W, Guo LX. 2019. Biomechanical comparison of the effects of anterior, posterior and transforaminal lumbar interbody fusion on vibration characteristics of the human lumbar spine. Comput Methods Biomech Biomed Eng. 22(5):1–9.
  • Galbusera F, Fantigrossi A, Raimondi MT, Assietti R, Sassi M, Fornari M. 2006. Biomechanics of the c5-c6 spinal unit before and after placement of a disc prosthesis. Biomech Model Mechanobiol. 5(4):253–261.
  • Goel VK, Mehta A, Jangra J, Faizan A, Kiapour A, Hoy RW, Fauth AR. 2007. Anatomic facet replacement system (AFRS) restoration of lumbar segment mechanics to intact: A finite element study and in vitro cadaver investigation. SAS J. 1(1):46–54.
  • Goel VK, Park H, Kong WZ. 1994. Investigation of vibration characteristics of the ligamentous lumbar spine using the finite element approach. J Biomech Eng. 116(4):377–383.
  • Guo LX, Li WJ. 2020. Finite element modeling and static/dynamic validation of thoracolumbar-pelvic segment. Comput Methods Biomech Biomed Eng. 23(2):69–80.
  • Guo LX, Wang ZW, Zhang YM, Lee KK, Teo EC, Li H, Wen BC. 2009. Material property sensitivity analysis on resonant frequency characteristics of the human spine. J Appl Biomech. 25(1):64–72.
  • Hansson TH, Keller TS, Spengler DM. 1987. Mechanical behavior of the human lumbar spine. II. Fatigue strength during dynamic compressive loading. J Orthop Res. 5(4):479–487.
  • Harms JG, Jeszenszky D. 1998. The unilateral transforaminal approach forposterior lumbar interbody fusion. Oper Orthop Traumatol. 10(2):90–102.
  • Hikata T, Kamata M, Furukawa M. 2014. Risk factors for adjacent segment disease after posterior lumbar interbody fusion and efficacy of simultaneous decompression surgery for symptomatic adjacent segment disease. J. Spinal Disord. 27:70–75.
  • Jost B, Cripton PA, Lund T, Oxland TR, Lippuner K, Jaeger P, Nolte LP. 1998. Compressive strength of interbody cages in the lumbar spine: the effect of cage shape, posterior instrumentation and bone density. Eur Spine J. 7(2):132–141.
  • Kelly N, Harrison NM, Mcdonnell P, Mcgarry JP. 2013. An experimental and computational investigation of the post-yield behaviour of trabecular bone during vertebral device subsidence. Biomech Model Mechanobiol. 12(4):685–703.
  • Kettler A, Wilke HJ, Dietl R, Krammer M, Lumenta C, Claes L. 2000. Stabilizing effect of posterior lumbar interbody fusion cages before and after cyclic loading. J Neurosurg. 92(1 Suppl):87–92.
  • Krammer M, Dietl R, Lumenta CB, Kettler A, Wilke HJ, Büttner A, Claes L. 2001. Resistance of the lumbar spine against axial compression forces after implantation of three different posterior lumbar interbody cages. Acta Neurochir (Wien). 143(12):1217–1222.
  • Kumar MN, Baklanov A, Chopin D. 2001. Correlation between sagittal plane changes and adjacent segment degeneration following lumbar spine fusion. Eur Spine J. 10(4):314–319.
  • Lazennec J-Y, Ramaré S, Arafati N, Laudet CG, Gorin M, Roger B, Hansen S, Saillant G, Maurs L, Trabelsi R. 2000. Sagittal alignment in lumbosacral fusion: relations between radiological parameters and pain. Eur Spine J. 9(1):47–55.
  • Lee CW, Yoon KJ, Ha SS. 2017. Which approach is advantageous to preventing development of adjacent segment disease? Comparative analysis of 3 different lumbar interbody fusion techniques (ALIF, LLIF, and PLIF) in L4-5 spondylolisthesis. World Neurosurg. 105:612–622.
  • Lee YH, Chung CJ, Wang CW, Peng YT, Chang CH, Chen CH, Chen YN, Li CT. 2016. Computational comparison of three posterior lumbar interbody fusion techniques by using porous titanium interbody cages with 50% porosity. Comput Biol Med. 71:35–45.
  • Liu X, Ma J, Park P, Huang XD, Xie N, Ye XJ. 2017. Biomechanical comparison of multilevel lateral interbody fusion with and without supplementary instrumentation: a three-dimensional finite element study. BMC Musculoskelet Disord. 18(1):63.
  • Lu T, Lu Y. 2019. Comparison of the biomechanical performance among PLF, TLIF, XLIF, and OLIF, a finite element analysis. World Neurosurg. 129:e890–e899.
  • Marcián P, Narra N, Borák L, Chamrad J, Wolff J. 2019. Biomechanical performance of cranial implants with different thicknesses and material properties: a finite element study. Comput Biol Med. 109:43–52.
  • Palepu V, Peck JH, Simon DD, Helgeson MD, Nagaraja S. 2017. Biomechanical evaluation of an integrated fixation cage during fatigue loading: a human cadaver study. J Neurosurg: Spine. 26(4):524–531.
  • Patwardhan AG, Havey RM, Meade KP, Lee B, Dunlap B. 1999. A follower load increases the load – carrying capacity of the lumbar spine in compression. Spine. 24(10):1003–1009.
  • Polikeit A, Ferguson SJ, Nolte LP, Orr TE. 2003. Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages: finite element analysis. Eur Spine J. 12(4):413–420.
  • Rao RD, David KS, Wang M. 2005. Biomechanical changes at adjacent segments following anterior lumbar interbody fusion using tapered cages. Spine. 30(24):2772–2776.
  • Rastegar S, Arnoux PJ, Wang X, Aubin CÉ. 2020. Biomechanical analysis of segmental lumbar lordosis and risk of cage subsidence with different cage heights and alternative placements in transforaminal lumbar interbody fusion. Comput Methods Biomech Biomed Eng. 23(9):456–411.
  • Renner SM, Natarajan RN, Patwardhan AG, Havey RM, Voronov LI, Guo BY, Andersson GBJ, An HS. 2007. Novel model to analyze the effect of a large compressive follower pre-load on range of motions in a lumbar spine. J Biomech. 40 (6):1326–1332.
  • Ruberte LM, Natarajan RN, Andersson GBJ. 2009. Influence of single-level lumbar degenerative disc disease on the behavior of the adjacent segments-a finite element model study. J Biomech. 42(3):341–348.
  • Schwab FJ, Smith VA, Biserni M, Gamez L, Farcy JP, Pagala M. 2002. Adult scoliosis: a quantitative radiographic and clinical analysis. Spine. 27(4):387–392.
  • Sidhu GS, Henkelman E, Vaccaro AR, Albert TJ, Hilibrand A, Anderson DG, Rihn JA. 2014. Minimally invasive versus open posterior lumbar interbody fusion: a systematic review. Clin Orthop Relat Res. 472(6):1792–1799.
  • Takahata M, Kotani Y, Abumi K. 2005. An investigational study on the healing process of anterior spinal arthrodesis using a bioactive ceramic spacer and the change in load-sharing of spinal instrumentation. Spine. 30:E195–203.
  • Tang S, Rebholz BJ. 2011. Does anterior lumbar interbody fusion promote adjacent degeneration in degenerative disc disease? A finite element study. J Orthop Sci. 16(2):221–228.
  • Thalheimer E. 1996. Practical approach to measurement and evaluation of exposure to whole-body vibration in the workplace. Semin Perinatol. 20(1):77–89.
  • Tsai P, Hsu CC, Chen SY, Wu TH, Huang CC. 2016. Biomechanical investigation into the structural design of porous additive manufactured cages using numerical and experimental approaches. Comput Biol Med. 76:14–23.
  • Tsuang YH, Chiang YF, Hung CY, Wei HW, Huang CH, Cheng CK. 2009. Comparison of cage application modality in posterior lumbar interbody fusion with posterior instrumentation – A finite element study. Med Eng Phys. 31(5):565–570.
  • Vokshoor A, Khurana S, Wilson D, Filsinger P. 2014. Clinical and radiographic outcomes after spinous process fixation and posterior fusion in an elderly cohort. Surg Technol Int. 25:271–276.
  • Wahlström J, Burström L, Johnson PW, Nilsson T, Järvholm B. 2018. Exposure to whole-body vibration and hospitalization due to lumbar disc herniation. Int Arch Occup Environ Health. 91(6):689–694.
  • Wang ST, Goel VK, Fu CY, Kubo S, Choi W, Liu CL, Chen TH. 2005. Posterior instrumentation reduces differences in spine stability as a result of different cage orientations: an in vitro study. Spine. 30(1):62–67.
  • Weinhoffer SL, Guyer RD, Herbert M, Griffith SL. 1995. Intradiscal pressure measurements above an instrumented fusion. a cadaveric study. Spine. 20(5):526–531.
  • Wilder DG, Woodworth BB, Frymoyer JW, Pope MH. 1982. Vibration and the human spine. Spine. 7(3):243–254.
  • Wu HC, Ya RF. 1976. Mechanical behavior of the human annulus fibrosus. J Biomech. 9(1):1–7.
  • Xu H, Ju W, Xu N, Zhang X, Zhu X, Zhu L, Qian X, Wen F, Wu W, Jiang F. 2013. Biomechanical comparison of transforaminal lumbar interbody fusion with 1 or 2 cages by finite-element analysis. Oper Neurosurg. 73(2):198–205.
  • Yang SD, Chen Q, Ding WY, Zhao JQ, Zhang YZ, Shen Y, Yang DL. 2016. Unilateral pedicle screw fixation with bone graft vs. bilateral pedicle screw fixation with bone graft or cage: a comparative study. Med Sci Monit. 22:890–897.
  • Zhang Z, Fogel GR, Liao Z, Sun Y, Liu W. 2018. Biomechanical analysis of lumbar interbody fusion cages with various lordotic angles: a finite element study. Comput Methods Biomech Biomed Eng. 21(3):247–254.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.