424
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Numerical implementation of an osmo-poro-visco-hyperelastic finite element solver: application to the intervertebral disc

& ORCID Icon
Pages 538-550 | Received 05 Mar 2020, Accepted 15 Oct 2020, Published online: 28 Oct 2020

References

  • Adams MA, Dolan P. 2012. Intervertebral disc degeneration: Evidence for two distinct phenotypes. J Anat. 221(6):497–506.
  • Alves JL, Yamamura N, Oda T, Teodosiu C. 2010. Numerical simulation of musculo-skeletal systems by V-Biomech. In: Middleton J, Evans S, Holt C, Jacobs C, Atienza C, Walker B, editors. CMBBE2010. Valencia, Spain.
  • Alves JL, Cazacu O. 2015. Correlation between strength differential effects in the plastic flow of the matrix and the rate of damage growth in porous polycrystals. Comptes Rendus Mécanique. 343(2):107–120.
  • Argoubi M, Shirazi-Adl A. 1996. Poroelastic creep response analysis of a lumbar motion segment in compression. J Biomech. 29(10):1331–1339.
  • Barros PD, Carvalho PD, Alves JL, Oliveira MC, Menezes LF. 2016. DD3MAT - A code for yield criteria anisotropy parameters identification. J Phys Conf Ser. 734:4–8.
  • Barthelemy VMP, van Rijsbergen MM, Wilson W, Huyghe JM, van Rietbergen B, Ito K. 2016. A computational spinal motion segment model incorporating a matrix composition-based model of the intervertebral disc. J Mech Behav Biomed Mater. 54:194–204.
  • Biot MA. 1941. General Theory of Three‐Dimensional Consolidation. J Appl Phys. 12(2):155–164.
  • Biot MA. 1972. Theory of finite deformations of porous solids. Indiana Univ. Math. J. 21(7):597–620.
  • Bonet J, Wood RD. 1997. Nonlinear continuum mechanics for finite element analysis. Cambridge: Cambridge University Press.
  • Brink U, Stein E. 1996. On some mixed finite element methods for incompressible and nearly incompressible finite elasticity. Comput Mech. 19(1):105–119.
  • Broberg KB. 1993. Slow deformation of intervertebral discs. J Biomech. 26(4-5):501–512.
  • Castro APG, Wilson W, Huyghe JM, Ito K, Alves JL. 2014. Intervertebral disc creep behavior assessment through an open source finite element solver. J Biomech. 47(1):297–301.
  • Castro APG, Yao J, Battisti T, Lacroix D. 2018. Poroelastic Modeling of Highly Hydrated Collagen Hydrogels: Experimental Results vs. Numerical Simulation With Custom and Commercial Finite Element Solvers. Front Bioeng Biotechnol. 6:1–8.
  • Chang TYP, Saleeb AF, Li G. 1991. Large strain analysis of rubber-like materials based on a perturbed Lagrangian variational principle. Comput Mech. 8(4):221–233.
  • Coombs DJ, Rullkoetter PJ, Laz PJ. 2017. Efficient probabilistic finite element analysis of a lumbar motion segment. J Biomech. 61:65–74.
  • Costa MC, Eltes P, Lazary A, Varga PP, Viceconti M, Dall'Ara E. 2019. Biomechanical assessment of vertebrae with lytic metastases with subject-specific finite element models. J Mech Behav Biomed Mater. 98:268–290.
  • Eberlein R, Holzapfel GA, Frohlich M. 2004. Multi-segment FEA of the human lumbar spine including the heterogeneity of the annulus fibrosus. Comput Mech. 34:147–163.
  • Ehlers W, Karajan N, Markert B. 2009. An extended biphasic model for charged hydrated tissues with application to the intervertebral disc. Biomech Model Mechanobiol. 8(3):233–251.
  • Eijkelkamp MF, van Donkelaar CC, Veldhuizen AG, van Horn JR, Huyghe JM, Verkerke GJ. 2001. Requirements for an artificial intervertebral disc. Int J Artif Organs. 24(5):311–321.
  • Fallah A, Ahmadian MT, Firozbakhsh K, Aghdam MM. 2016. Micromechanics and constitutive modeling of connective soft tissues. J Mech Behav Biomed Mater. 60:157–176.
  • Fan R, Gong H, Qiu S, Zhang X, Fang J, Zhu D. 2015. Effects of resting modes on human lumbar spines with different levels of degenerated intervertebral discs: a finite element investigation. BMC Musculoskelet Disord. 16:221.
  • Ferguson SJ, Ito K, Nolte LP. 2004. Fluid flow and convective transport of solutes within the intervertebral disc. J Biomech. 37(2):213–221.
  • Freutel M, Schmidt H, Dürselen L, Ignatius A, Galbusera F. 2014. Finite element modeling of soft tissues: material models, tissue interaction and challenges. Clin Biomech (Bristol, Avon). 29(4):363–372.
  • Fujii K, Yamazaki M, Kang JD, Risbud MV, Cho SK, Qureshi SA, Hecht AC, Iatridis JC. 2019. Discogenic Back pain: literature review of definition, diagnosis, and treatment. JBMR Plus. 3(5):e10180.
  • Galbusera F, Bashkuev M, Wilke H-J, Shirazi-Adl A, Schmidt H. 2014. Comparison of various contact algorithms for poroelastic tissues. Comput Methods Biomech Biomed Engin. 17(12):1323–1334.
  • Galbusera F, Schmidt H, Neidlinger-Wilke C, Wilke H-J. 2011. The effect of degenerative morphological changes of the intervertebral disc on the lumbar spine biomechanics: a poroelastic finite element investigation. Comput Methods Biomech Biomed Engin. 14(8):729–739.
  • Galbusera F, Schmidt H, Noailly J, Malandrino A, Lacroix D, Wilke HJ, Shirazi-Adl A. 2011. Comparison of four methods to simulate swelling in poroelastic finite element models of intervertebral discs. J Mech Behav Biomed Mater. 4(7):1234–1241.
  • Goins ML, Wimberley DW, Yuan PS, Fitzhenry LN, Vaccaro AR. 2005. Nucleus pulposus replacement: An emerging technology. Spine J. 5:317–324.
  • Heuer F, Schmitt H, Schmidt H, Claes L, Wilke HJ. 2007. Creep associated changes in intervertebral disc bulging obtained with a laser scanning device. Clin Biomech (Bristol, Avon). 22(7):737–744.
  • Holzapfel GA, Gasser TC. 2001. A viscoelastic model for fiber-reinforced composites at finite strains: Continuum basis, computational aspects and applications. Comput Methods Appl Mech Eng. 190(34):4379–4403.
  • Holzapfel GA, Schulze-Bauer CAJ, Feigl G, Regitnig P. 2005. Single lamellar mechanics of the human lumbar anulus fibrosus. Biomech Model Mechanobiol. 3(3):125–140.
  • Huyghe JM, van Campen DH, Arts T, Heethaar RM. 1991. A two-phase finite element model of the diastolic left ventricle. J Biomech. 24(7):527–538.
  • Huyghe JM. 1986. Non-linear finite element models for the beating left ventricle and the intramyocardial coronary circulation. [place unknown]: Eindhoven University of Technology.
  • Iatridis J, Setton L, Weidenbaum M, Mow V. 1997. The viscoelastic behavior of the non-degenerate human lumbar nucleus pulposus in shear. J Biomech. 30(10):1005–1013.
  • Kaliske M, Nasdala L, Rothert H. 2001. On damage modelling for elastic and viscoelastic materials at large strain. Comput Struct. 79(22-25):2133–2141.
  • Kida N, Adachi T. 2014. Finite element formulation and analysis for an arterial wall with residual and active stresses. Comput Methods Biomech Biomed Engin. 18(11):1143–1159.
  • Krag MH, Cohen MC, Haugh LD, Pope MH. 1990. Body Height Change During Upright and Recumbent Posture. Spine (Phila Pa 1976):15(3):202–207.
  • Le Huec JC, Charosky S, Barrey C, Rigal J, Aunoble S. 2011. Sagittal imbalance cascade for simple degenerative spine and consequences: algorithm of decision for appropriate treatment. Eur Spine J. 20(S5):699–703.
  • Maas SA, Ellis BJ, Rawlins DS, Weiss JA. 2016. Finite element simulation of articular contact mechanics with quadratic tetrahedral elements. J Biomech. 49(5):659–667.
  • Malandrino A, Jackson AR, Huyghe JM, Noailly J. 2015. Poroelastic modeling of the intervertebral disc: A path toward integrated studies of tissue biophysics and organ degeneration. MRS Bull. 40(4):324–332.
  • Marini G, Studer H, Huber G, Püschel K, Ferguson SJ. 2016. Geometrical aspects of patient-specific modelling of the intervertebral disc: collagen fibre orientation and residual stress distribution. Biomech Model Mechanobiol. 15(3):543–560.
  • Masni-AzianTanaka M. 2018. Biomechanical investigation on the influence of the regional material degeneration of an intervertebral disc in a lower lumbar spinal unit: A finite element study. Comput Biol Med. 98:26–38.
  • Mijuca D. 2004. On hexahedral finite element HC8/27 in elasticity. Comput Mech. 33(6):466–480.
  • Nikkhoo M, Wang JL, Parnianpour M, El-Rich M, Khalaf K. 2018. Biomechanical response of intact, degenerated and repaired intervertebral discs under impact loading – Ex-vivo and In-Silico investigation. J Biomech. 70:26–32.
  • Ogden RW, Saccomandi G, Sgura I. 2004. Fitting hyperelastic models to experimental data. Comput Mech. 34(6):484–502.
  • Oomens CWJ, van Campen DH, Grootenboer HJ. 1987. A mixture approach to the mechanics of skin. J Biomech. 20(9):877–885.
  • Paul CPL, Smit TH, de Graaf M, Holewijn RM, Bisschop A, van de Ven PM, Mullender MG, Helder MN, Strijkers GJ. 2018. Quantitative MRI in early intervertebral disc degeneration: T1rho correlates better than T2 and ADC with biomechanics, histology and matrix content. PLoS One. 13(1):e0191442.
  • Pierce DM, Ricken T, Holzapfel G. a. 2012. A hyperelastic biphasic fibre-reinforced model of articular cartilage considering distributed collagen fibre orientations: continuum basis, computational aspects and applications. Comput Methods Biomech Biomed Engin. 5842:1–18.
  • Raj PP. 2008. Intervertebral disc: anatomy-physiology-pathophysiology-treatment. Pain Pract. 8(1):18–44.
  • Remij EW, Remmers JJC, Huyghe JM, Smeulders DMJ. 2015. The enhanced local pressure model for the accurate analysis of fluid pressure driven fracture in porous materials. Comput Methods Appl Mech Eng. 286:293–312.
  • Schmidt H, Bashkuev M, Galbusera F, Wilke H-J, Shirazi-Adl A. 2014. Finite element study of human lumbar disc nucleus replacements. Comput Methods Biomech Biomed Engin. 17(16):1762–1776.
  • Schmidt H, Kettler A, Rohlmann A, Claes L, Wilke HJ. 2007. The risk of disc prolapses with complex loading in different degrees of disc degeneration - A finite element analysis. Clin Biomech (Bristol, Avon). 22(9):988–998.
  • Schmidt H, Reitmaier S, Graichen F, Shirazi-Adl A. 2016. Review of the fluid flow within intervertebral discs - How could in vitro measurements replicate in vivo? J Biomech. 49(14):3133–3146.
  • Schroeder Y, Elliott DM, Wilson W, Baaijens FPT, Huyghe JM. 2008. Experimental and model determination of human intervertebral disc osmoviscoelasticity. J Orthop Res. 26(8):1141–1146.
  • Smit TH, Odgaard A, Schneider E. 1997. Structure and function of vertebral trabecular bone. Spine (Phila Pa 1976). 22:2823–2833.
  • Stokes IA, Chegini S, Ferguson SJ, Gardner-Morse MG, Iatridis JC, Laible JP. 2010. Limitation of finite element analysis of poroelastic behavior of biological tissues undergoing rapid loading. Ann Biomed Eng. 38(5):1780–1788.
  • Sussman T, Bathe K-J. 1987. A finite element formulation for nonlinear incompressible elastic and inelastic analysis. Comput Struct. 26(1-2):357–409.
  • Teixeira De Freitas JA, Moldovan ID, Toma M. 2010. Mixed and hybrid stress elements for biphasic media. Comput Struct. 88(23-24):1286–1299.
  • Terzaghi K. 1943. Theoretical soil mechanics. Hoboken, NJ, USA: John Wiley & Sons, Inc.
  • Tyrrell AR, Reilly T, Troup JD. 1985. Circadian variation in stature and the effects of spinal loading. Spine (Phila Pa 1976). 10:161–164.
  • van der Voet A. 1997. A comparison of finite element codes for the solution of biphasic poroelastic problems. Proc Inst Mech Eng H. 211(2):209–211.
  • van Loon R, Huyghe JM, Wijlaars MW, Baaijens FPT. 2003. 3D FE implementation of an incompressible quadriphasic mixture model. Int J Numer Meth Eng. 57(9):1243–1258.
  • Velísková P, Bashkuev M, Shirazi-Adl A, Schmidt H. 2017. Computational study of the role of fluid content and flow on the lumbar disc response in cyclic compression: Replication of in vitro and in vivo conditions. J Biomech. 70:16–25.
  • Williams JR, Natarajan RN, Andersson GBJ. 2007. Inclusion of regional poroelastic material properties better predicts biomechanical behavior of lumbar discs subjected to dynamic loading. J Biomech. 40(9):1981–1987.
  • Wilson W, Huyghe JM, van Donkelaar CC. 2006. A composition-based cartilage model for the assessment of compositional changes during cartilage damage and adaptation. Osteoarthritis Cartilage. 14(6):554–560.
  • Wilson W, Huyghe JM, Van Donkelaar CC. 2007. Depth-dependent compressive equilibrium properties of articular cartilage explained by its composition. Biomech Model Mechanobiol. 6(1-2):43–53.
  • Wilson W, Van Donkelaar CC, Van Rietbergen B, Huiskes R. 2005. A fibril-reinforced poroviscoelastic swelling model for articular cartilage. J Biomech. 38(6):1195–1204.
  • Xu M, Yang J, Lieberman IH, Haddas R. 2017. Lumbar spine finite element model for healthy subjects: development and validation. Comput Methods Biomech Biomed Engin. 20(1):1–15.
  • Yu C, Malakpoor K, Huyghe JM. 2019. A mixed hybrid finite element framework for the simulation of swelling ionized hydrogels. Comput Mech. 63(5):835–852.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.