738
Views
22
CrossRef citations to date
0
Altmetric
Research Article

Hemodynamic study in 3D printed stenotic coronary artery models: experimental validation and transient simulation

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 623-636 | Received 01 Jun 2020, Accepted 22 Oct 2020, Published online: 23 Nov 2020

References

  • Abdolmaleki F, Gheibi Hayat SM, Bianconi V, Johnston TP, Sahebkar A. 2019. Atherosclerosis and immunity: a perspective. Trends Cardiovasc Med. 29(6):363–371.
  • Abràmoff MD, Magalhães PJ, Ram SJ. 2004. Image processing with imageJ. Biophotonics Int. 11(7):36–41.
  • Ahmadi M, Ansari R. 2019. Computational simulation of an artery narrowed by plaque using 3D FSI method: influence of the plaque angle, non-Newtonian properties of the blood flow and the hyperelastic artery models. Biomed Phys Eng Exp. 5(4):45037.
  • Ahmed SA, Giddens DP. 1984. Pulsatile poststenotic flow studies with laser Doppler anemometry. J Biomech. 17(9):695–705.
  • Ansys. 2013. ANSYS fluent user’s guide.
  • Asaad Y, Epshtein M, Yee A, Korin N. 2019. The flow dependent adhesion of von Willebrand Factor (VWF)-A1 functionalized nanoparticles in an in vitro coronary stenosis model. Molecules. 24(15):2679.
  • Banks J, Bressloff NW. 2007. Turbulence modeling in three-dimensional stenosed arterial bifurcations. J Biomech Eng. 129(1):40–50.
  • Barber T. 2017. Wall shear stress and near-wall flows in the stenosed femoral artery. Comput Methods Biomech Biomed Eng. 20(10):1048–1055..
  • Biglarian M, Momeni M, Hassanzadeh H, Moshfegh A, Toghraie D, Javadzadegan A, Rostami S. 2020. Computational investigation of stenosis in curvature of coronary artery within both dynamic and static models. Comput Methods Programs Biomed. 185(2020):105170.
  • Buradi A, Mahalingam A. 2016. Numerical simulation of pulsatile blood flow in an idealized curved section of a human coronary. Int J Mech Prod Eng. Special Issue Sep 2016. 15–19.
  • Buradi A, Mahalingam A. 2018. Effect of stenosis severity on wall shear stress based hemodynamic descriptors using multiphase mixture theory. JAFM. 11(6):1497–1509.
  • Buradi A, Morab S, Mahalingam A. 2019. Effect of stenosis severity on shear-induced diffusion of red blood cells in coronary arteries. J Mech Med Biol. 19(05):1950034.
  • Calejo J, Pinho D, Galindo-Rosales F, Lima R, Campo-Deaño L. 2015. Particulate blood analogues reproducing the erythrocytes cell-free layer in a microfluidic device containing a hyperbolic contraction. Micromachines. 7(1):4.
  • Caro CG, Pedley TJ, Schroter RC, Seed WA, Parker KH. 2012. The mechanics of the circulation. 2nd ed. Cambridge: Cambridge University Press.
  • Caruso MV, De Rosa S, Indolfi C, Fragomeni G. 2015. Computational analysis of stenosis geometry effects on right coronary hemodynamics. In: Proc Annu Int Conf IEEE Eng Med Bio SocEMBS; Milan, August 2015. p. 981–984.
  • Carvalho V, Maia I, Souza A, Ribeiro J, Costa P, Puga H, Teixeira SFCF, Lima RA. 2020. In vitro stenotic arteries to perform blood analogues flow visualizations and measurements: a review. Open Biomed Eng J, accepted for publication.
  • Carvalho V, Rodrigues N, Lima RA, Teixeira S. 2020a. Numerical simulation of blood pulsatile flow in stenotic coronary arteries: the effect of turbulence modeling and non-Newtonian assumptions. International Conference on Applied Mathematics and Computational Science, IEEE. Athens, June 2020.
  • Carvalho V, Rodrigues N, Lima RA, Teixeira SFCF. 2020b. Modeling blood pulsatile turbulent flow in stenotic coronary arteries. Int J Biol Biomed Eng, accepted for publication.
  • Carvalho V, Rodrigues N, Ribeiro R, Costa PF, Lima RA, Teixeira SFCF. 2020. 3D printed biomodels for flow visualization in stenotic vessels: an experimental and numerical study. Micromachines. 11(6):549.
  • Choi W, Park JH, Byeon H, Lee SJ. 2018. Flow characteristics around a deformable stenosis under pulsatile flow condition. Phys Fluids. 30(1):1070–6631.
  • Costa PF, Albers HJ, Linssen JEA, Middelkamp HHT, Van Der Hout L, Passier R, Van Den Berg A, Malda J, Van Der Meer AD. 2017. Mimicking arterial thrombosis in a 3D-printed microfluidic: in vitro vascular model based on computed tomography angiography data. Lab Chip. 17(16):2785–2792.
  • Doutel E, Carneiro J, Campos JBLM, Miranda JM. 2018. Artificial stenoses for computational hemodynamics. Appl Math Model. 59:427–440.
  • Doutel E, Viriato N, Carneiro J, Campos JBLM, Miranda JM. 2019. Geometrical effects in the hemodynamics of stenotic and non-stenotic left coronary arteries—numerical and in vitro approaches. Int J Numer Method Biomed Eng. 35(1):1–18.
  • Ferziger JH, Peric M. 2002. Computational methods for fluid dynamics. 3rd ed. Berlin: Springer.
  • Formaggia L, Quarteroni A, Veneziani A. 2009. Cardiovascular mathematics - modeling and simulation of the circulatory system. 1st ed. Berlin: Springer.
  • Gaudio LT, Caruso MV, De Rosa S, Indolfi C, Fragomeni G. 2018. Different blood flow models in coronary artery diseases: effects on hemodynamic parameters. In Proc Annu Int Conf IEEE Eng Med and Bio Soc (EMBS);. Honolulu. July 18–21. p. 3185–3188.
  • Gidaspow D. 1994. Multiphase flow and fluidization: continuum and kinetic theory descriptions. 1st ed. Cambridge: Academic Press.
  • Gijsen F, Katagiri Y, Barlis P, Bourantas C, Collet C, Coskun U, Daemen J, Dijkstra J, Edelman E, Evans P, et al. 2019. Expert recommendations on the assessment of wall shear stress in human coronary arteries: Existing methodologies, technical considerations, and clinical applications. Eur Heart J. 40(41):3421–3433.
  • Haverich A, Boyle EC. 2019. Atherosclerosis pathogenesis and microvascular dysfunction. 1st ed. Berlin: Springer.
  • Huh H, Hojin H, Sang L. 2015. Effect of non-Newtonian viscosity on the fluid-dynamic characteristics in stenotic vessels. Exp Fluids. 56(8):167.
  • Kabinejadian F, Ghista DN, Su B, Kaabi Nezhadian M, Chua LP, Yeo JH, Leo HL. 2014. In vitro measurements of velocity and wall shear stress in a novel sequential anastomotic graft design model under pulsatile flow conditions. Med Eng Phys. 36(10):1233–1245. http://dx.doi.org/10.1016/j.medengphy.2014.06.024.
  • Kabir MA, Alam MF, Uddin MA. 2018. A numerical study on the effects of Reynolds number on blood flow with spiral velocity through regular arterial stenosis. Chiang Mai J Sci. 45(6):2515–2527.
  • Kamangar S, Badruddin IA, Badarudin A, Nik-Ghazali N, Govindaraju K, Salman Ahmed NJ, Yunus Khan TM. 2017. Influence of stenosis on hemodynamic parameters in the realistic left coronary artery under hyperemic conditions. Comput Methods Biomech Biomed Eng. 20(4):365–372. http://dx.doi.org/10.1080/10255842.2016.1233402.
  • Kefayati S, Holdsworth DW, Poepping TL. 2014. Turbulence intensity measurements using particle image velocimetry in diseased carotid artery models: effect of stenosis severity, plaque eccentricity, and ulceration. J Biomech. 47(1):253–263. http://dx.doi.org/10.1016/j.jbiomech.2013.09.007.
  • Kefayati S, Milner JS, Holdsworth DW, Poepping TL. 2014. In vitro shear stress measurements using particle image velocimetry in a family of carotid artery models: effect of stenosis severity, plaque eccentricity, and ulceration. PLoS One. 9(7):e98209.
  • Kelidis P, Konstantinidis E. 2018. Pulsatile flow through a constricted tube: effect of stenosis morphology on hemodynamic parameters. Comput Methods Biomech Biomed Eng. 21(7):479–487.
  • Liu B, Zheng J, Bach R, Tang D. 2015. Influence of model boundary conditions on blood flow patterns in a patient specific stenotic right coronary artery. BioMed Eng. 14(Suppl 1):S6.
  • Mahalingam A, Gawandalkar UU, Kini G, Buradi A, Araki T, Ikeda N, Nicolaides A, Laird JR, Saba L, Suri JS. 2016. Numerical analysis of the effect of turbulence transition on the hemodynamic parameters in human coronary arteries. Cardiovasc Diagn Ther. 6(3):208–220.
  • Malek AM, Alper SL. 1999. Hemodynamic shear stress and its role in atherosclerosis. Am Med Assoc. 282(21):2035–2042.
  • Manninen M, Taivassalo V, Kallio S. 1996. On the mixture model for multiphase flow. 1st ed. Espoo: Valtion Teknillen Tutkimuskeskus (VTT).
  • Martin DM, Murphy EA, Boyle FJ. 2014. Computational fluid dynamics analysis of balloon-expandable coronary stents: influence of stent and vessel deformation. Med Eng Phys. 36(8):1047–1056.
  • Moreno C, Bhaganagar K. 2013. Modeling of stenotic coronary artery and implications of plaque morphology on blood flow. Model Simul Eng. 2013(7):1–14.
  • Mulani SS, Jagad PI. 2015. Analysis of the effects of plaque deposits on the blood flow through human artery. Int Eng Res J. 41(2):2319–3182.
  • Nagargoje M, Gupta R. 2020. Effect of asymmetry on the flow behavior in an idealized arterial bifurcation. Comput Methods Biomech Biomed Eng. 23(6):232–247..
  • Ostadfar A. 2016. Biofluid mechanics: principles and applications. 1st ed. Berlin: Elsevier.
  • Ostrowski Z, Melka B, Adamczyk W, Rojczyk M, Golda A, Nowak AJ. 2016. CFD analysis of multiphase blood flow within aorta and its thoracic branches of patient with coarctation of aorta using multiphase Euler - Euler approach. J Phys Conf Ser. 745(3):32112.
  • Pinho D, Campo-Deaño L, Lima R, Pinho FT. 2017. In vitro particulate analogue fluids for experimental studies of rheological and hemorheological behavior of glucose-rich RBC suspensions. Biomicrofluidics. 11(5):054105.
  • Pinho D, Lima R, Pereira A, Gayubo F. 2013. Automatic tracking of labeled red blood cells in microchannels. Int J Numer Methods Biomed Eng. 29(9):977–987
  • Pinto SIS, Campos JBLM. 2016. Numerical study of wall shear stress-based descriptors in the human left coronary artery. Comput Methods Biomech Biomed Eng. 19(13):1443–1455.
  • Razavi A, Shirani E, Sadeghi MR. 2011. Numerical simulation of blood pulsatile flow in a stenosed carotid artery using different rheological models. J Biomech. 44(11):2021–2030. http://dx.doi.org/10.1016/j.jbiomech.2011.04.023.
  • Rubenstein DA, Yin W, Frame M. 2015. Biofluid Mechanics. 2nd ed. Berlin: Elsevier.
  • Souza A, Souza MS, Pinho D, Agujetas R, Ferrera C, Lima R, Puga H, Ribeiro J. 2020. 3D manufacturing of intracranial aneurysm biomodels for flow visualizations: a low-cost fabrication process. Mech Res Commun. 107:103535.
  • Ryval J, Straatman AG, Steinman DA. 2004. Two-equation turbulence modeling of pulsatile flow in a stenosed tube. J Biomech Eng. 126(5):625–635.
  • Tabe R, Ghalichi F, Hossainpour S, Ghasemzadeh K. 2016. Laminar-to-turbulence and relaminarization zones detection by simulation of low Reynolds number turbulent blood flow in large stenosed arteries. Biomed Mater Eng. 27(2–3):119–129.
  • Taylor P, Linge F, Hye A, Paul MC, Hye MA, Paul MC. 2014. Pulsatile spiral blood flow through arterial stenosis. Comput Methods Biomech Biomed Eng. 17(15):1727–1737.
  • Tu J, Inthavong K, Wong K. 2015. Computational hemodynamics - theory, modelling and applications. 1st ed. Berlin: Springer.
  • Versteeg HK, Malalasekera W. 2007. An introduction to computational fluid dynamics, the finite volume method. 2nd ed. Upper Saddle River: Prentice Hall.
  • Wen J, Liu K, Khoshmanesh K, Jiang W, Zheng T. 2015. Numerical investigation of haemodynamics in a helical-type artery bypass graft using non-Newtonian multiphase model. Comput Methods Biomech Biomed Eng. 18(7):760–768. http://dx.doi.org/10.1080/10255842.2013.845880.
  • Wu J, Liu G, Huang W, Ghista DN, Wong KKL. 2015. Transient blood flow in elastic coronary arteries with varying degrees of stenosis and dilatations: CFD modelling and parametric study. Comput Methods Biomech Biomed Eng. 18(16):1835–1845.
  • Wu W, Aubry N, Massoudi M, Kim J, Antaki J. 2014. A numerical study of blood flow using mixture theory Wei-Tao. Int J Eng Sci. 76:56–72.
  • Wu WT, Li Y, Aubry N, Massoudi M, Antaki JF. 2017. Numerical simulation of red blood cell-induced platelet transport in saccular aneurysms. Appl Sci. 7(5):484.
  • Zhou F-F, Liu Y-h, Ge P-C, Chen Z-H, Ding X-Q, Liu J-Y, Jia Q-W, An F-H, Li L-H, Wang L-S, et al. 2017. Coronary artery diameter is inversely associated with the severity of coronary lesions in patients undergoing coronary angiography. Cell Physiol Biochem. 43(3):1247–1257.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.