206
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Biomechanical assessment of screw safety between far cortical locking and locked plating constructs

, , , , , , , & show all
Pages 663-672 | Received 29 Jul 2019, Accepted 28 Oct 2020, Published online: 20 Nov 2020

References

  • Ahmad M, Nanda R, Bajwa AS, Candal-Couto J, Green S, Hui AC. 2007. Biomechanical testing of the locking compression plate: when does the distance between bone and implant significantly reduce construct stability? Injury. 38(3):358–364.
  • American Concrete Institute. 1988. Analysis and design of reinforced concrete bridge structures. Detroit, MI: American Concrete Institute.
  • Aluede E, McDonald E, Jergesen H, Penoyar T, Calvert K. 2014. Mechanical behaviour of low-cost dynamic compression plates correlates with manufacturing quality standards. Int Orthop. 38(1):141–147.
  • Bottlang M, Doornink J, Byrd GD, Fitzpatrick DC, Madey SM. 2009. A nonlocking end screw can decrease fracture risk caused by locked plating in the osteoporotic diaphysis. J Bone Joint Surg Am. 91(3):620–627. doi:10.2106/JBJS.H.01038.
  • Bottlang M, Doornink J, Fitzpatrick DC, Madey SM. 2009. Far cortical locking can reduce stiffness of locked plating constructs while retaining construct strength. J Bone Joint Surg Am. 91:1985–1994.
  • Bottlang M, Doornink J, Lujan TJ, Fitzpatrick DC, Marsh JL, Augat P, von Rechenberg B, Lesser M, Madey SM. 2010. Effects of construct stiffness on healing of fractures stabilized with locking plates. J Bone Joint Surg Am. 92 (Suppl 2):12–22. doi:10.2106/JBJS.J.00780.
  • Bottlang M, Lesser M, Koerber J, Doornink J, von Rechenberg B, Augat P, Fitzpatrick DC, Madey SM, Marsh JL. 2010. Far cortical locking can improve healing of fractures stabilized with locking plates. J Bone Joint Surg Am. 92:1652–1660. doi:10.2106/JBJS.I.01111.
  • Delisser PJ, McCombe GP, Trask RS, Etches JA, German AJ, Holden SL, Wallace AM, Burton NJ. 2013. Ex vivo evaluation of the biomechanical effect of varying monocortical screw numbers on a plate-rod canine femoral gap model. Vet Comp Orthop Traumatol. 26(3):177–185.
  • Edwards KL. 2004. ASM handbook, volume 11: failure analysis and prevention: edited by B.T. Becker and R.J. Shipley, ASM International, 2002, 1178 pp, £177.00. Mater Design. 25(8):735–736. ISBN 0-87170-704-7.
  • Freude T, Schroeter S, Plecko M, Bahrs C, Martetschlaeger F, Kraus TM, Stoeckle U, Doebele S. 2014. Dynamic-locking-screw (DLS)-leads to less secondary screw perforations in proximal humerus fractures. BMC Musculosk Disord. 15:194
  • Giannoudis PV, Giannoudis VP. 2017. Far cortical locking and active plating concepts: new revolutions of fracture fixation in the waiting? Injury. 48(12):2615–2618.
  • Henschel J, Tsai S, Fitzpatrick DC, Marsh JL, Madey SM, Bottlang M. 2017. Comparison of 4 methods for dynamization of locking plates: differences in the amount and type of fracture motion. J Orthop Trauma. 31(10):531–537. Oct
  • Hibbeler RC. 2013. Mechanics of materials, SI edition. USA: Pearson Schweiz Ag.
  • Kolodziej P, Lee FS, Patel A, Kassab SS, Shen K-L, Yang KH, Mast JW. 1998. Biomechanical evaluation of the schuhli nut. Clin Orthop. 347:79–85. https://journals.lww.com/corr/Abstract/1998/02000/Biomechanical_Evaluation_of_the_Schuhli_Nut.10.aspx.
  • Lin J, Lin SJ, Chiang H, Hou SM. 2001. Bending strength and holding power of tibial locking screws. Clin Orthopaed Rel Res. 385:199. doi:10.1097/00003086-200104000-00031.
  • Macciotta R. 2018. Factor of safety. In: Encyclopedia of engineering geology. Cham: Springer International Publishing; p. 327–328.
  • Marines I, Bin X, Bathias C. 2003. An understanding of very high cycle fatigue of metals. Int J Fatigue. 25(9–11):1101–1107.
  • McGrawHill 2006. Fundamentals of structural analysis. New York: John Wiley.
  • Miller KJ, Brown MW. 1973. A theory for fatigue failure under multiaxial stress–strain conditions. Proc Inst Mech Eng. 187(1):745–755.
  • Nunamaker DM. 1998. Experimental models of fracture repair. Clin Orthopaed Rel Res. 355:S56. doi:10.1097/00003086-199810001-00007.
  • Proverbio E, Bonaccorsi LM. 2001. Microstructural analysis of failure of a stainless steel bone plate implant. Pract Fail Anal. 1(4):33–38.
  • Ramotowski W, Granowski R. Zespol 1991. An original method of stable osteosynthesis. Clin Orthopaed Rel Res. 272:67–75.
  • Ring D, Kloen P, Kadzielski J, Helfet D, Jupiter JB. 2004. Locking compression plates for osteoporotic nonunions of the diaphyseal humerus. Clin Orthopaed Rel Res. 425:50–54. doi:10.1097/01.blo.0000131484.27501.4b.
  • Schileo E, Taddei F, Malandrino A, Cristofolini L, Viceconti M. 2007. Subject-specific finite element models can accurately predict strain levels in long bones. J Biomech. 40(13):2982–2989.
  • Schneider E, Michel MC, Genge M, Zuber K, Ganz R, Perren SM. 2001. Loads acting in an intramedullary nail during fracture healing in the human femur. J Biomech. 34(7):849–857.
  • Shekar CC, Patil S. 2015. Analysis of broken interlocking screws after intramedullary nailing of long bone fractures. Int J Scient Res Publ (IJSRP). 5. http://www.ijsrp.org/research-paper-0115.php?rp=P373573.
  • Sommer C, Gautier E, Müller M, Helfet DL, Wagner M. 2003. First clinical results of the locking compression plate (LCP). Injury-Int J Care Injured. 34:43–54.
  • Sommers MB, Fitzpatrick DC, Madey SM, Zanderschulp CV, Bottlang M. 2007. A surrogate long-bone model with osteoporotic material properties for biomechanical testing of fracture implants. J Biomech. 40(15):3297–3304.
  • Stoffel K, Booth G, Rohrl SM, Kuster M. 2007. A comparison of conventional versus locking plates in intraarticular calcaneus fractures: a biomechanical study in human cadavers. Clin Biomech (Bristol, Avon). 22(1):100–105.
  • Tan SL, Balogh ZJ. 2009. Indications and limitations of locked plating. Injury-Int J Care Injured. 40(7):683–691.
  • Wang F, Cui W. 2015. Experimental investigation on dwell-fatigue property of Ti–6Al–4V ELI used in deep-sea manned cabin. Mater Sci Eng A. 642:136–141.
  • Xie P, Ouyang H, Deng Y, Yang Y, Xu J, Huang W. 2017. Comparison of conventional reconstruction plate versus direct metal laser sintering plate: an in vitro mechanical characteristics study. J Orthop Surg Res. 12(1). doi:10.1186/s13018-017-0628-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.