126
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Continuum modeling for neuronal lamination during cerebral morphogenesis considering cell migration and tissue growth

, &
Pages 799-805 | Received 28 Jul 2020, Accepted 15 Nov 2020, Published online: 08 Dec 2020

References

  • Armstrong NJ, Painter KJ, Sherratt JA. 2006. A continuum approach to modelling cell-cell adhesion. J Theor Biol. 243(1):98–113.
  • Borrell V, Gotz M. 2014. Role of radial glial cells in cerebral cortex folding. Curr Opin Neurobiol. 27:39–46.
  • Borrell V, Reillo I. 2012. Emerging roles of neural stem cells in cerebral cortex development and evolution. Dev Neurobiol. 72(7):955–971.
  • Budday S, Raybaud C, Kuhl E. 2014. A mechanical model predicts morphological abnormalities in the developing human brain. Sci Rep. 4:5644.
  • Buganza Tepole A, Kuhl E. 2016. Computational modeling of chemo-bio-mechanical coupling: a systems-biology approach toward wound healing. Comput Methods Biomech Biomed Engin. 19(1):13–30.
  • Caffrey JR, Hughes BD, Britto JM, Landman KA. 2014. An in silico agent-based model demonstrates Reelin function in directing lamination of neurons during cortical development. PLoS One. 9(10):e110415.
  • Chai X, Zhao S, Fan L, Zhang W, Lu X, Shao H, Wang S, Song L, Failla AV, Zobiak B, et al. 2016. Reelin and cofilin cooperate during the migration of cortical neurons: a quantitative morphological analysis. Development. 143(6):1029–1040.
  • D'Arcangelo G, Curran T. 1998. Reeler: new tales on an old mutant mouse. Bioessays. 20(3):235–244.
  • D'Arcangelo G, Miao GG, Chen SC, Soares HD, Morgan JI, Curran T. 1995. A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature. 374(6524):719–723.
  • Del Toro D, Ruff T, Cederfjall E, Villalba A, Seyit-Bremer G, Borrell V, Klein R. 2017. Regulation of cerebral cortex folding by controlling neuronal migration via FLRT adhesion molecules. Cell. 169(4):621–635.
  • Elsayed Y, Lekakou C, Tomlins P. 2019. Modeling, simulations, and optimization of smooth muscle cell tissue engineering for the production of vascular grafts. Biotechnol Bioeng. 116(6):1509–1522.
  • Goriely A, Budday S, Kuhl E. 2015. Chapter 2. Neuromechanics: from neurons to brain. In: Bordas SPA, Balint DS, editors. Advances in applied mechanics. New York (NY): Elsevier; p. 79–139.
  • Iwashita M, Kataoka N, Toida K, Kosodo Y. 2014. Systematic profiling of spatiotemporal tissue and cellular stiffness in the developing brain. Development. 141(19):3793–3798.
  • Marin O, Valiente M, Ge X, Tsai LH. 2010. Guiding neuronal cell migrations. Cold Spring Harb Perspect Biol. 2(2):a001834.
  • Matsunaga Y, Noda M, Murakawa H, Hayashi K, Nagasaka A, Inoue S, Miyata T, Miura T, Kubo KI, Nakajima K. 2017. Reelin transiently promotes N-cadherin-dependent neuronal adhesion during mouse cortical development. Proc Natl Acad Sci U S A. 114(8):2048–2053.
  • Misson JP, Edwards MA, Yamamoto M, Caviness VS. 1988. Identification of radial glial cells within the developing murine central nervous system: studies based upon a new immunohistochemical marker. Brain Res Dev Brain Res. 44(1):95–108.
  • Rakic P. 1972. Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol. 145(1):61–83.
  • Rakic P. 2009. Evolution of the neocortex: a perspective from developmental biology. Nat Rev Neurosci. 10(10):724–735.
  • Reillo I, de Juan Romero C, Garcia-Cabezas MA, Borrell V. 2011. A role for intermediate radial glia in the tangential expansion of the mammalian cerebral cortex. Cereb Cortex. 21(7):1674–1694.
  • Rooij R. d, Kuhl E. 2018. A physical multifield model predicts the development of volume and structure in the human brain. J Mech Phys Solids. 112:563–576.
  • Sekine K, Kawauchi T, Kubo K, Honda T, Herz J, Hattori M, Kinashi T, Nakajima K. 2012. Reelin controls neuronal positioning by promoting cell-matrix adhesion via inside-out activation of integrin α5β1. Neuron. 76(2):353–369.
  • Sheppard AM, Pearlman AL. 1997. Abnormal reorganization of preplate neurons and their associated extracellular matrix: an early manifestation of altered neocortical development in the reeler mutant mouse. J Comp Neurol. 378(2):173–179.
  • Takeda H, Kameo Y, Inoue Y, Adachi T. 2020. An energy landscape approach to understanding variety and robustness in tissue morphogenesis. Biomech Model Mechanobiol. 19(2):471–479.
  • Tallinen T, Chung JY, Biggins JS, Mahadevan L. 2014. Gyrification from constrained cortical expansion. Proc Natl Acad Sci U S A. 111(35):12667–12672.
  • Tallinen T, Chung JY, Rousseau F, Girard N, Lefèvre J, Mahadevan L. 2016. On the growth and form of cortical convolutions. Nature Phys. 12(6):588–593.
  • Valiente M, Marin O. 2010. Neuronal migration mechanisms in development and disease. Curr Opin Neurobiol. 20(1):68–78.
  • Zubler F, Douglas R. 2009. A framework for modeling the growth and development of neurons and networks. Front Comput Neurosci. 3:25.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.