227
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Varying speed modulation of continuous-flow left ventricular assist device based on cardiovascular coupling numerical model

, &
Pages 956-972 | Received 04 Aug 2020, Accepted 06 Dec 2020, Published online: 21 Dec 2020

References

  • Ando M, Nishimura T, Takewa Y, Yamazaki K, Kyo S, Ono M, Tsukiya T, Mizuno T, Taenaka Y, Tatsumi E. 2011. Electrocardiogram-synchronized rotational speed change mode in rotary pumps could improve pulsatility. Artif Organs. 35(10):941–947.
  • Bearnson GB, Olsen DB, Khanwilkar PS, Long JW, Allaire PE, Maslen EH. 1996. Pulsatile operation of a centrifugal ventricular assist device with magnetic bearings. ASAIO J. 42(5):M620–M624.
  • Boes S, Thamsen B, Haas M, Daners MS, Meboldt M, Granegger M. 2019. Hydraulic characterization of implantable rotary blood pumps. IEEE Trans Biomed Eng. 66(6):1618–1627.
  • Bouwmeester JC, Park J, Geirsson A, Valdovinos J, Bonde P. 2019. Quantification of pulsed operation of rotary left ventricular assist devices with wave intensity analysis. ASAIO J. 65(4):324–330.
  • Bozkurt S. 2016. Physiologic outcome of varying speed rotary blood pump support algorithms: a review study. Australas Phys Eng Sci Med. 39(1):13–28.
  • Bozkurt S, Bozkurt S. 2017. In-silico evaluation of left ventricular unloading under varying speed continuous flow left ventricular assist device support. Biocybern Biomed Eng. 37(3):373–387.
  • Bozkurt S, van de Vosse FN, Rutten MCM. 2014. Improving arterial pulsatility by feedback control of a continuous flow left ventricular assist device via in silico modeling. Int J Artif Organs. 37(10):773–785.
  • Bozkurt S, van de Vosse FN, Rutten MCM. 2016. Enhancement of arterial pressure pulsatility by controlling continuous-flow left ventricular assist device flow rate in mock circulatory system. J Med Biol Eng. 36(3):308–315.
  • Bozkurt S, van Tuijl S, Schampaert S, van de Vosse FN, Rutten MCM. 2014. Arterial pulsatility improvement in a feedback-controlled continuous flow left ventricular assist device: an ex-vivo experimental study. Med Eng Phys. 36(10):1288–1295.
  • Bozkurt S, van Tuijl S, van de Vosse FN, Rutten MCM. 2016. Arterial pulsatility under phasic left ventricular assist device support. Biomed Mater Eng. 27(5):451–460.
  • Castagna F, Stohr EJ, Pinsino A, Cockcroft JR, Willey J, Garan AR, Topkara VK, Colombo PC, Yuzefpolskaya M, McDonnell BJ. 2017. The unique blood pressures and pulsatility of LVAD patients: current challenges and future opportunities. Curr Hypertens Rep. 19(10):85.
  • Chen ZS, Jena SK, Giridharan GA, Sobieski MA, Koenig SC, Slaughter MS, Griffith BP, Wu ZJJ. 2019. Shear stress and blood trauma under constant and pulse-modulated speed CF-VAD operations: CFD analysis of the HVAD. Med Biol Eng Comput. 57(4):807–818.
  • Chirinos JA, Segers P. 2010. Noninvasive evaluation of left ventricular afterload: part 2: arterial pressure-flow and pressure-volume relations in humans. Hypertension. 56(4):563–570.
  • Choi S. 1998. Modeling and control of left ventricular assist system [Ph. D. dissertation]. Pittsburgh (PA): University of Pittsburgh.
  • Crow S, John R, Boyle A, Shumway S, Liao K, Colvin-Adams M, Toninato C, Missov E, Pritzker M, Martin C, et al. 2009. Gastrointestinal bleeding rates in recipients of nonpulsatile and pulsatile left ventricular assist devices. J Thorac Cardiovasc Surg. 137(1):208–215.
  • Dang G, Epperla N, Muppidi V, Sahr N, Pan A, Simpson P, Kreuziger LB. 2017. Medical management of pump-related thrombosis in patients with continuous-flow left ventricular assist devices: a systematic review and meta-analysis. ASAIO J. 63(4):373–385.
  • Date K, Nishimura T, Arakawa M, Takewa Y, Kishimoto S, Umeki A, Ando M, Mizuno T, Tsukiya T, Ono M, et al. 2017. Changing pulsatility by delaying the rotational speed phasing of a rotary left ventricular assist device. J Artif Organs. 20(1):18–25.
  • Date K, Nishimura T, Takewa Y, Kishimoto S, Arakawa M, Umeki A, Ando M, Mizuno T, Tsukiya T, Ono M, et al. 2016. Shifting the pulsatility by increasing the change in rotational speed for a rotary LVAD using a native heart load control system. J Artif Organs. 19(4):315–321.
  • Diehl P, Aleker M, Helbing T, Sossong V, Beyersdorf F, Olschewski M, Bode C, Moser M. 2010. Enhanced microparticles in ventricular assist device patients predict platelet, leukocyte and endothelial cell activation. Interact Cardiovasc Thorac Surg. 11(2):133–137.
  • Frazier OH. 2010. Unforeseen consequences of therapy with continuous-flow pumps. Circ Heart Fail. 3(6):647–649.
  • Fukamachi K, Horvath DJ, Massiello AL, Fumoto H, Horai T, Rao S, Golding LAR. 2010. An innovative, sensorless, pulsatile, continuous-flow total artificial heart: device design and initial in vitro study. J Heart Lung Transplant. 29(1):13–20.
  • Grosman-Rimon L, Billia F, Kobulnik J, Bar-Ziv SP, Cherney DZ, Rao V. 2018. The physiological rationale for incorporating pulsatility in continuous-flow left ventricular assist devices. Cardiol Rev. 26(6):294–301.
  • Ising M, Warren S, Sobieski MA, Slaughter MS, Koenig SC, Giridharan GA. 2011. Flow modulation algorithms for continuous flow left ventricular assist devices to increase vascular pulsatility: a computer simulation study. Cardiovasc Eng Technol. 2(2):90–100.
  • Ising MS, Sobieski MA, Slaughter MS, Koenig SC, Giridharan GA. 2015. Feasibility of pump speed modulation for restoring vascular pulsatility with rotary blood pumps. ASAIO J. 61(5):526–532.
  • Kleinheyer M, Timms DL, Tansley GD, Nestler F, Greatrex NA, Frazier OH, Cohn WE. 2016. Rapid speed modulation of a rotary total artificial heart impeller. Artif Organs. 40(9):824–833.
  • Massimo C. 2016. Mechanical circulatory support for advanced heart failure: are we about to witness a new “gold standard”? J Cardiovasc Dev Dis. 3(35):1–22.
  • Moazami N, Dembitsky WP, Adamson R, Steffen RJ, Soltesz EG, Starling RC, Fukamachi K. 2015. Does pulsatility matter in the era of continuous-flow blood pumps? J Heart Lung Transplant. 34(8):999–1004.
  • Naito N, Nishimura T, Iizuka K, Takewa Y, Umeki A, Ando M, Ono M, Tatsumi E. 2018. Rotational speed modulation used with continuous-flow left ventricular assist device provides good pulsatility. Interact Cardiovasc Thorac Surg. 26(1):119–123.
  • Ng BC, Kleinheyer M, Smith PA, Timms D, Cohn WE, Lim E. 2018. Pulsatile operation of a continuous-flow right ventricular assist device (RVAD) to improve vascular pulsatility. PLoS One. 13(4):e0195975.
  • Pak SW, Uriel N, Takayama H, Cappleman S, Song R, Colombo PC, Charles S, Mancini D, Gillam L, Naka Y, et al. 2010. Prevalence of de novo aortic insufficiency during long-term support with left ventricular assist devices. J Heart Lung Transplant. 29(10):1172–1176.
  • Pant S, Corsini C, Baker C, Hsia TY, Pennati G, Vignon-Clementel IE. 2018. A lumped parameter model to study atrioventricular valve regurgitation in stage 1 and changes across stage 2 surgery in single ventricle patients. IEEE Trans Biomed Eng. 65(11):2450–2458.
  • Petrucci RJ, Rogers JG, Blue L, Gallagher C, Russell SD, Dordunoo D, Jaski BE, Chillcott S, Sun B, Yanssens TL, et al. 2012. Neurocognitive function in destination therapy patients receiving continuous-flow vs pulsatile-flow left ventricular assist device support. J Heart Lung Transplant. 31(1):27–36.
  • Pirbodaghi T, Axiak S, Weber A, Gempp T, Vandenberghe S. 2012. Pulsatile control of rotary blood pumps: does the modulation waveform matter? J Thorac Cardiovasc Surg. 144(4):970–977.
  • Pirbodaghi T, Cotter C, Bourque K. 2014. Power consumption of rotary blood pumps: pulsatile versus constant-speed mode. Artif Organs. 38(12):1024–1028.
  • Pirbodaghi T, Weber A, Axiak S, Carrel T, Vandenberghe S. 2013. Asymmetric speed modulation of a rotary blood pump affects ventricular unloading. Eur J Cardiothorac Surg. 43(2):383–388.
  • Qian KX. 1996. Pulsatile impeller heart: a viable alternative to a problematic diaphragm heart. Med Eng Phys. 18(1):57–66.
  • Qian KX, Zheng M. 1997. Chronic left ventricular assist in calves with a pulsatile impeller pump. ASAIO J. 43(1):89–91.
  • Rose EA, Gelijns AC, Moskowitz AJ, Heitjan DF, Stevenson LW, Dembitsky W, Long JW, Ascheim DD, Tierney AR, Levitan RG, et al. 2001. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med. 345(20):1435–1443.
  • Ruschen D, Prochazka F, Amacher R, Bergmann L, Leonhardt S, Walter M. 2017. Minimizing left ventricular stroke work with iterative learning flow profile control of rotary blood pumps. Biomed Signal Process Control. 31:444–451.
  • Shepard RB, Simpson DC, Sharp JF. 1966. Energy equivalent pressure. Arch Surg. 93(5):730–740.
  • Shi YB, Brown AG, Lawford PV, Arndt A, Nuesser P, Hose DR. 2011. Computational modelling and evaluation of cardiovascular response under pulsatile impeller pump support. Interface Foc. 1(3):320–337.
  • Shi YB, Lawford PV, Hose DR. 2010. Numerical modeling of hemodynamics with pulsatile impeller pump support. Ann Biomed Eng. 38(8):2621–2634.
  • Slaughter MS, Rogers JG, Milano CA, Russell SD, Conte JV, Feldman D, Sun B, Tatooles AJ, Delgado RM, Long JW, et al. 2009. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med. 361(23):2241–2251.
  • Soucy KG, Koenig SC, Giridharan GA, Sobieski MA, Slaughter MS. 2013a. Defining pulsatility during continuous-flow ventricular assist device support. J Heart Lung Transplant. 32(6):581–587.
  • Soucy KG, Koenig SC, Giridharan GA, Sobieski MA, Slaughter MS. 2013b. Rotary pumps and diminished pulsatility: do we need a pulse? ASAIO J. 59(4):355–366.
  • Starling RC, Naka Y, Boyle AJ, Gonzalez-Stawinski G, John R, Jorde U, Russell SD, Conte JV, Aaronson KD, McGee EC, et al. 2011. Results of the post-U.S. food and drug administration-approval study with a continuous flow left ventricular assist device as a bridge to heart transplantation: a prospective study using the INTERMACS (interagency registry for mechanically assisted circulatory support)). J Am Coll Cardiol. 57(19):1890–1898.
  • Suga H, Sagawa K. 1974. Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle. Circ Res. 35(1):117–126.
  • Umeki A, Nishimura T, Ando M, Takewa Y, Yamazaki K, Kyo S, Ono M, Tsukiya T, Mizuno T, Taenaka Y, et al. 2012. Alteration of LV end-diastolic volume by controlling the power of the continuous-flow LVAD, so it is synchronized with cardiac beat: development of a native heart load control system (NHLCS). J Artif Organs. 15(2):128–133.
  • Undar A, Zapanta CM, Reibson JD, Souba M, Lukic B, Weiss WJ, Snyder AJ, Kunselman AR, Pierce WS, Rosenberg G, et al. 2005. Precise quantification of pressure flow waveforms of a pulsatile ventricular assist device. ASAIO J. 51(1):56–59.
  • Undar S, Frazier OTH, Fraser CD. 1999. Defining pulsatile perfusion: quantification in terms of energy equivalent pressure. Artif Organs. 23(8):712–716.
  • Ursino M. 1998. Interaction between carotid baroregulation and the pulsating heart: a mathematical model. Am J Physiol. 275(5):H1733–H1747.
  • Vandenberghe S, Segers P, Antaki JF, Meyns B, Verdonck PR. 2005. Hemodynamic modes of ventricular assist with a rotary blood pump: continuous, pulsatile, and failure. ASAIO J. 51(6):711–718.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.