577
Views
2
CrossRef citations to date
0
Altmetric
Research Article

The biomechanical effects of Ti versus PEEK used in the PLIF surgery on lumbar spine: a finite element analysis

, , , , &
Pages 1115-1124 | Received 11 Mar 2019, Accepted 22 Dec 2020, Published online: 11 Jan 2021

References

  • Abode-Iyamah K, Kim SB, Grosland N, Kumar R, Belirgen M, Lim TH, Torner J, Hitchon PW. 2014. Spinal motion and intradiscal pressure measurements before and after lumbar spine instrumentation with titanium or PEEK rods. J Clin Neurosci. 21(4):651–655.
  • Ambati DV, Wright EK, Lehman RA, Kang DG, Wagner SC, Dmitriev AE. 2015. Bilateral pedicle screw fixation provides superior biomechanical stability in transforaminal lumbar interbody fusion: a finite element study. Spine J. 15(8):1812–1822.
  • Bashkuev M, Checa S, Postigo S, Duda G, Schmidt H. 2015. Computational analyses of different intervertebral cages for lumbar spinal fusion. J Biomech. 48(12):3274–3282.
  • Biswas JK, Rana M, Majumder S, Karmakar SK, Roychowdhury A. 2018. Effect of two-level pedicle-screw fixation with different rod materials on lumbar spine: a finite element study. J Orthop Sci. 23(2):258–265.
  • Cabraja M, Oezdemir S, Koeppen D, Kroppenstedt S. 2012. Anterior cervical discectomy and fusion: comparison of titanium and polyetheretherketone cages. BMC Musculoskelet Disord. 13:172
  • Chang T-K, Huang C-H, Liu Y-C, Chen W-C, McClean CJ, Lai Y-S, Cheng C-K. 2013. Biomechanical evaluation and comparison of polyetheretherketone rod system to traditional titanium rod fixation on adjacent levels. Formos J Musculoskelet Disord. 4(2):42–47.
  • Chatham LS, Patel VV, Yakacki CM, Dana Carpenter R. 2017. Interbody spacer material properties and design conformity for reducing subsidence during lumbar interbody fusion. J Biomech Eng. 139:051005.
  • Chen C, Cheng C, Liu C-LC-L, Lo W-H. 2001. Stress analysis of the disc adjacent to interbody fusion in lumbar spine. Med Eng Phys. 23(7):483–491.
  • De Iure F, Bosco G, Cappuccio M, Paderni S, Amendola L. 2012. Posterior lumbar fusion by peek rods in degenerative spine: preliminary report on 30 cases. Eur Spine J. 21(S1):50–54.
  • Denozière G, Ku DN. 2006. Biomechanical comparison between fusion of two vertebrae and implantation of an artificial intervertebral disc. J Biomech. 39(4):766–775.
  • Erbulut DU, Zafarparandeh I, Hassan CR, Lazoglu I, Ozer AF. 2015. Determination of the biomechanical effect of an interspinous process device on implanted and adjacent lumbar spinal segments using a hybrid testing protocol: a finite-element study. J Neurosurg Spine. 23(2):200–208.
  • Fantigrossi A, Galbusera F, Raimondi MT, Sassi M, Fornari M. 2007. Biomechanical analysis of cages for posterior lumbar interbody fusion. Med Eng Phys. 29(1):101–109.
  • Guo L-X, Wang Z-W, Zhang Y-M, Lee K-K, Teo E-C, Li H, Wen B-C. 2009. Material property sensitivity analysis on resonant frequency characteristics of the human spine. J Appl Biomech. 25(1):64–72.
  • Hsieh YY, Chen CH, Tsuang FY, Wu LC, Lin SC, Chiang CJ. 2017. Removal of fixation construct could mitigate adjacent segment stress after lumbosacral fusion: a finite element analysis. Clin Biomech (Bristol, Avon). 43:115–120.
  • Jin YJ, Kim YE, Seo JH, Choi HW, Jahng TA. 2013. Effects of rod stiffness and fusion mass on the adjacent segments after floating mono-segmental fusion: a study using finite element analysis. Eur Spine J. 22(5):1066–1077.
  • Kaito T, Hosono N, Mukai Y, Makino T, Fuji T, Yonenobu K. 2010. Induction of early degeneration of the adjacent segment after posterior lumbar interbody fusion by excessive distraction of lumbar disc space. J Neurosurg Spine. 12(6):671–679.
  • Kang K-T, Koh Y-G, Son J, Yeom JS, Park J-H, Kim H-J. 2017. Biomechanical evaluation of pedicle screw fixation system in spinal adjacent levels using polyetheretherketone, carbon-fiber-reinforced polyetheretherketone, and traditional titanium as rod materials. Compos B Eng. 130:248–256.
  • Kersten RFMR, van Gaalen SM, de Gast A, Öner FC. 2015. Polyetheretherketone (PEEK) cages in cervical applications: a systematic review. Spine J. 15(6):1446–1460.
  • Kim H-J, Kang K-T, Chun H-J, Lee C-K, Chang B-S, Yeom JS. 2015. The influence of intrinsic disc degeneration of the adjacent segments on its stress distribution after one-level lumbar fusion. Eur Spine J. 24(4):827–837.
  • Kim K, Park WM, Kim YH, Lee S. 2010. Stress analysis in a pedicle screw fixation system with flexible rods in the lumbar spine. Proc Inst Mech Eng H. 224(3):477–485.
  • Liu N, Lu T, Wang Y, Sun Z, Li J, He X. 2019. Effects of new cage profiles on the improvement in biomechanical performance of multilevel anterior cervical corpectomy and fusion: a finite element analysis. World Neurosurg. 129:e87–e96.
  • Lu T, Lu Y. 2019. Comparison of biomechanical performance among posterolateral fusion and transforaminal, extreme, and oblique lumbar interbody fusion: a finite element analysis. World Neurosurg. 129:e890–e899.
  • Mittal DP, Kumar DA, Baria DR. 2017. Outcomes of kidney vs PEEK cages used in transforaminal lumbar interbody fusion (TLIF) for the treatment of degenerative lumbar spine. Int J Orthop Sci. 3(4i):626–629.
  • Niu C-C, Liao J-C, Chen W-J, Chen L-H. 2010. Outcomes of interbody fusion cages used in 1 and 2-levels anterior cervical discectomy and fusion. J Spinal Disord Tech. 23(5):310–316.
  • Oktenoglu T, Erbulut DU, Kiapour A, Ozer AF, Lazoglu I, Kaner T, Sasani M, Goel VK. 2015. Pedicle screw-based posterior dynamic stabilisation of the lumbar spine: in vitro cadaver investigation and a finite element study. Comput Methods Biomech Biomed Eng. 18(11):1252–1261.
  • Panjabi MM, Oxland TR, Yamamoto I, Crisco JJ. 1994. Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves. J Bone Joint Surg A. 76:413–424.
  • Park P, Garton HJ, Gala VC, Hoff JT, McGillicuddy JE. 2004. Adjacent segment disease after lumbar or lumbosacral fusion: review of the literature. Spine (Phila Pa 1976). 29:1938–1944.
  • Park WM, Kim K, Kim YH. 2013. Effects of degenerated intervertebral discs on intersegmental rotations, intradiscal pressures, and facet joint forces of the whole lumbar spine. Comput Biol Med. 43(9):1234–1240.
  • Rohlmann A, Burra NK, Zander T, Bergmann G. 2007. Comparison of the effects of bilateral posterior dynamic and rigid fixation devices on the loads in the lumbar spine: a finite element analysis. Eur Spine J. 16(8):1223–1231.
  • Rohlmann A, Zander T, Bergmann G. 2005. Comparison of the biomechanical effects of posterior and anterior spine-stabilizing implants. Eur Spine J. 14(5):445–453.
  • Scemama C, Magrino B, Gillet P, Guigui P. 2016. Risk of adjacent-segment disease requiring surgery after short lumbar fusion: results of the French Spine Surgery Society Series. J Neurosurg Spine. 25(1):46–51.
  • Schmoelz W, Huber JF, Nydegger T, Dipl-Ing Claes L, Wilke HJ. 2003. Dynamic stabilization of the lumbar spine and its effects on adjacent segments: an in vitro experiment. J Spinal Disord Tech. 16:418–423.
  • Schroeder GD, Murray MR, Hsu WK. 2011. A review of dynamic stabilization in the lumbar spine. Oper Tech Orthop. 21(3):235–239.
  • Seaman S, Kerezoudis P, Bydon M, Torner JC, Hitchon PW. 2017. Titanium vs. polyetheretherketone (PEEK) interbody fusion: meta-analysis and review of the literature. J Clin Neurosci. 44:23–29.
  • Vadapalli S, Sairyo K, Goel VK, Robon M, Biyani A, Khandha A, Ebraheim N. 2006. Biomechanical rationale for using polyetheretherketone (PEEK) spacers for lumbar interbody fusion–a finite element study. Spine (Phila Pa 1976). 31:E992–E998.
  • van Dijk M, Smit TH, Sugihara S, Burger EH, Wuisman PI. 2002. The effect of cage stiffness on the rate of lumbar interbody fusion: an in vivo model using poly(l-lactic acid) and titanium cages. Spine (Phila Pa 1976). 27(7):682–688.
  • Wang L, Zhang B, Chen S, Lu X, Li ZY, Guo Q. 2016. A validated finite element analysis of facet joint stress in degenerative lumbar scoliosis. World Neurosurg. 95:126–133.
  • Woldtvedt DJ, Womack W, Gadomski BC, Schuldt D, Puttlitz CM. 2011. Finite element lumbar spine facet contact parameter predictions are affected by the cartilage thickness distribution and initial joint gap size. J Biomech Eng. 133(6):061009
  • Wu Y, Wang Y, Wu J, Guan J, Mao N, Lu C, Lv R, Ding M, Shi Z, Cai B. 2016. Study of double-level degeneration of lower lumbar spines by finite element model. World Neurosurg. 86:294–299.
  • Yamamoto I, Panjabi MM, Crisco T, Oxland T. 1989. Three-dimensional movements of the whole lumbar spine and lumbosacral joint. Spine (Phila Pa 1976). 14:1256–1260.
  • Zhang Z, Li H, Fogel GR, Xiang D, Liao Z, Liu W. 2018. Finite element model predicts the biomechanical performance of transforaminal lumbar interbody fusion with various porous additive manufactured cages. Comput Biol Med. 95:167–174.
  • Zhao X, Du L, Xie Y, Zhao J. 2018. Effect of lumbar lordosis on the adjacent segment in transforaminal lumbar interbody fusion: a finite element analysis. World Neurosurg. 114:e114–e120.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.