167
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Application of multi-component fluid model in studies of the origin of skin burns during electrosurgical procedures

, &
Pages 1409-1418 | Received 19 Aug 2020, Accepted 11 Feb 2021, Published online: 05 Mar 2021

References

  • Aird LN, Brown CJ. 2012. Systematic review and meta-analysis of electrocautery versus scalpel for surgical skin incisions. Am J Surg. 204(2):216–221.
  • Bae HS, Lee MY, Park JU. 2018. Intraoperative burn from a grounding pad of electrosurgical device during breast surgery: a CARE-compliant case report. Medicine (Baltimore). 97(1):e8370(1–4).
  • Belik DV, Kustov IN, Belik KD, Shekalov AV. 2017. Correction of the output parameters of an electrosurgical unit forminimizing thermal damage to tissues. Biomed Eng. 51(4):258–261.
  • Belov SV, Danileiko YK, Nefedov SM, Osiko VV, Salyuk VA, Baburin NV, Sidorov VA. 2010 June. High frequency electrosurgical apparatuses with low temperature plasma generation. Biomed Eng. 44(1):1–5.
  • Bisinotto FMB, Dezena RA, Martins LB, Galvão MC, Sobrinho JM, Calçado MS. 2017. Burns related to electrosurgery – report of two cases. Rev Bras Anestesiol. (Engl). 67(5):527–534.
  • Comsol Multiphysics 1986–2020. Burlington (MA): COMSOL, Inc. www.comsol.com.
  • Dias EJ, Schneider BJ, Ribeiro E. 2019. On the origin of skin burns and neuromuscular electrical stimulation as a consequence of electrosurgical procedures. Res Biomed Eng. 35(2):111–122.
  • Dixon AR, Watkin DF. 1990. Electrosurgical skin incision versus conventional scalpel: a prospective trial. J R Coll Surg Edinb. 35(5):299–301.
  • Dokos S. 2017. Modelling organs, tissues, cells and devices: using MATLAB and COMSOL multiphysics. Berlin, Germany: Springer.
  • Dufaye G, Cherouat A, Bachmann JM. 2013. Advanced modelling of the mechanical behaviour of biological tissues: application to 3D breast deformation. Comp Meth Biomech Biomed Eng. 16(sup1):305–307.
  • El‐Sayed M, Mohamed S, Saridogan E. 2020. Safe use of electrosurgery in gynaecological laparoscopic surgery. Obstet Gynecol. 22(1):9–20.
  • Golpaygani AT, Movahedi MM, Reza M. 2016. A study on performance and safety tests of electrosurgical equipment. J Biomed Phys Eng. 6(3):175–182.
  • Gordillo-Vasquez FJ, Donko Z. 2009. Electron energy distribution functions and transport coefficients relevant for air plasmas in the troposphere: impact of humidity and gas temperature. Plasma Sourc SciTechnol. 18(3):034021.
  • Grimnes S. 1983. Dielectric breakdown of human skin in vivo. Med Biol Eng Comput. 21(3):379–381.
  • Hackam R. 1970. Effects of electrode configuration and voltage polarity on the electrical breakdown of mercury vapour. I J Elec. 28(1):79–87.
  • Klas M, Moravsky L, Matejčik Š, Zahoran M, Martišovitš V, Radjenović B, Radmilović-Radjenović M. 2017. The breakdown voltage characteristics of compressed ambient air microdischarges from direct current to 10.2 MHz. Plasma Sources Sci Technol. 26(5):055023.
  • Kunhardt EE, Luessen LH. 2013. Electrical breakdown and discharges in gases: part a fundamental processes and breakdown. New York (NY): Springer-Verlag.
  • Li B, Sinha U, Sankaranarayanan G. 2016. Modelling and control of non-linear tissue compression and heating using an LQG controller for automation in robotic surgery. Trans Inst Meas Control. 38(12):1491–1499.
  • Lin CL, Lan GJ. 2019. A computational approach to investigate optimal cutting speed configurations in rotational needle biopsy cutting soft tissue. Comput Methods Biomech Biomed Engin. 22(1):84–83.
  • Loveless AM, Meng G, Ying Q, Wu F, Wang K, Cheng Y, Garne AL. 2019. The transition to paschen's law for microscale gas breakdown at subatmospheric pressure. Sci Rep. 9 (1):5669– 5661.
  • Lu S, Xiang J, Qing C, Jin S, Liao Z, Shi J. 2002. Effect of necrotic tissue on progressive injury in deep partial thickness burn wounds. Chin Med J. (Engl). 115(3):323–325.
  • Lu Z, Arikatla VS, Han Z, Allen BF, De S. 2014. A physics-based algorithm for real-time simulation of electrosurgery procedures in minimally invasive surgery. Int J Med Robot. 10(4):495–504.
  • Maciel A, De S. 2008. Physics-based real time laparoscopic electrosurgery simulation. Stud Health Technol Inform. 132:272–274.
  • Martinsen T, Pettersen FJ, Kalvøy H, Tronstad C, Kvarstein G, Bakken A, Høgetveit JO, Martinsen OG, Grimnes S, Frich L. 2019. Electrosurgery and temperature increase in tissue with a passive metal implant. Front Surg. 6(8):1–8.
  • Massarweh NN, Cosgriff N, Slakey DP. 2006. Electrosurgery: history, principles, and current and future uses. J Am Col Surg. 202(3):520–530.
  • Meek JM, Craggs JD. 1953. Electrical breakdown of gases. Oxford, UK: Oxford Press.
  • Meeuwsen F, Guédon A, Klein J, van Der Elst M, Dankelman J, Van Den Dobbelsteen J. 2019. Electrosurgery: short-circuit between education and practice. Minim Invasive Ther Allied Technol. 28 (4):247–253.
  • Meng G, Ying Q, Wang K, Gao X, Cheng Y. 2019. The influence of the cathode radius on the microgap breakdown in air based on PIC/MCC simulation. 2019 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP) (20–23 Oct. 2019, Richland, USA).
  • Mukaddes AMM, Jaher MR, Roy D, Shioya R. 2018. A simulation study of bio-heat transfer in human skin under different burning conditions. AIP Conference Proceedings. 1980(1):050002.
  • Palanker D, Vankov A, Jayaraman P. 2008. On mechanisms of interaction in electrosurgery. New J Phys. 10(12):123022(1-15).
  • Pan J, Yang Y, Gao Y, Qin H, Si Y. 2019. Real-time simulation of electrocautery procedure using meshfree methods in laparoscopic cholecystectomy. Vis Comput. 35(6-8):861–872.
  • Park SS, Lim JA, Yeo JS. 2014. Intraoperative electrical burn caused by stainless tube tree with noncontact electrosurgical ground: a case report. Anesth Pain Med. 9(4):274–276.
  • Pedersen A. 1967. Calculation of spark breakdown or corona starting voltages in nonuniform fields. IEEE Trans on Power Apparatus and Syst. PAS-86(2):200–206.
  • Peters MJ, Hendriks M, Stinstra JG. 2001. The passive DC conductivity of human tissues described by cells in solution. Bioelectrochemistry. 53(2):155–160.
  • Petri AK, Schmiedchen K, Stunder D, Dechent D, Kraus T, Bailey WH, Driessen S. 2017. Biological effects of exposure to static electric fields in humans and vertebrates: a systematic review. Environ Health. 16(1):41(1-23).
  • Phillips CK, Hruby GW, Durak E, Lehman DS, Humphrey PA, Mansukhani MM, Landman J. 2008. Tissue response to surgical energy devices. Urology. 71(4):744–748.
  • Plasma Module User's Guide 2020–1986. Burlington (MA): COMSOL, Inc. https://doc.comsol.com/5.4/doc/com.comsol.help.plasma/PlasmaModuleUsersGuide.pdf.
  • Radmilović-Radjenović M, Radjenović B, Klas M, Bojarov A, Matejčik Š. 2013. The breakdown mechanism in electrical discharges: the role of the field emission effect in direct current discharges in microgaps. Acta Phys Slovaca. 6(3):105–205.
  • Radmilović-Radjenović M, Radjenović D, Radjenović B. 2019. Simulation studies of the electrode configuration effect on the breakdown phenomenon. I J Adv Res Comp Sci Elec Eng. 8 (12):68–72.
  • Saaiq M, Zaib S, Ahmad S. 2012. Electrocautery burns: experience with three cases and review of literature. Ann Burns Fire Disasters. 25(4):203–206.
  • Schneider BJ, Abatti PJ. 2008. Electrical characteristics of the sparks produced by electrosurgical devices. IEEE Trans Biomed Eng. 55(2 Pt 1):589–593.
  • Shen YD, Lin LH, Chiang HJ, Ou KL, Cheng HY. 2016. Research of electrosurgical unit with novel antiadhesion composite thin film for tumor ablation: Microstructural characteristics, thermal conduction properties, and biological behaviors. J Biomed Mater Res. 104(1):96–105.
  • Sultan SA, Alahmadi B, Mohabbat A. Sr. 2020. Hand skin burn as a complication of electrosurgery use in prone position in surgery: a case report. Cureus. 12(8):e10101.
  • Taheri A, Mansoori P, Sandoval LF, Feldman SR, Pearce D, Williford PM. 2014. Electrosurgery: part I basics and principles. J Am Acad Dermato. 70(4):591–605.
  • Taheri A, Mansoori P, Sandoval LF, Feldman SR, Pearce D, Williford PM. 2014. Electrosurgery: part I. Basics and principles. J Am Acad Dermatol. 70(4):591(e1-e14).
  • Tammam AE, Ahmed HH, Abdella AH, Taha SAM. 2015. Comparative study between monopolar electrodes and bipolar electrodes in hysteroscopic surgery. J Clin Diagn Res. 9(11):QC11–QC13.
  • Türkan A, Akkurt G, Yalaza M, Değirmencioğlu G, Kafadar MT, Yenidünya S, İnan A, Dener C. 2019. Effect of LigaSure™, monopolar cautery, and bipolar cautery on surgical margins in breast-conserving surgery. Breast Care (Basel)). 14(4):194–199.
  • Uhm HS, Jung SJ, Kim HS. 2003. Influence of gas temperature on electrical breakdown in cylindrical electrodes. J. Korean Phy. Soc. 42(9):S989–S993.
  • Wu MP, Ou CS, Chen SL, Yen EY, Rowbotham R. 2000. Complications and recommended practices for electrosurgery in laparoscopy. Am J Surg. 179(1):67–73.
  • Wurzer H, Maeckel R, Lademann J, Audring H, Liess HD. 1997. A spark counter as a control unit of a radio frequency surgery device. IEEE Trans Biomed Eng. 44(9):831–838.
  • Yang Q, Jin Y, Sima W, Liu M. 2016. Effect of the electrode material on the breakdown voltage and space charge distribution of propylene carbonate under impulse voltage. AIP Adv. 6 (4):045215.
  • Yang CH, Li W, Chen RK. 2018. Characterization and modeling of tissue thermal conductivity during an electrosurgical joining process. IEEE Trans Biomed Eng. 65(2):365– 370.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.