358
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Finite element analysis of lower limb exoskeleton during sit-to-stand transition

&
Pages 1419-1425 | Received 29 Jan 2020, Accepted 16 Feb 2021, Published online: 09 Mar 2021

References

  • Abd Rahman NI, Md Dawal SZ, Yusoff N, Mohd Kamil NS. 2018. Anthropometric measurements among four Asian countries in designing sitting and standing workstations. Sādhanā 43, 10. https://doi.org/https://doi.org/10.1007/s12046-017-0768-8.
  • Atmaja R, Munadi M, Tauviqirrahman M. 2017. Stress analysis of lower limb exoskeleton for walking assistance using finite element method. Int J Appl Eng Res. 12:3864–3866.
  • Grimaldi G, Manto M. 2013. Functional impacts of exoskeleton-based rehabilitation in chronic stroke: multi-joint versus single-joint robotic training. J Neuroeng Rehabil. 10:113.
  • Herianto Saryanto WY, Cahyadi AI. 2016. Modeling and design of low cost lower limb rehabilitation robot control system for post-stroke patient using PWM controller. Int J Mech Mechat Eng. 16:101–108.
  • Karmegam K, Sapuan SM, Ismail MY, Ismail N, Shamsul Bahri MT, Shuib S, Mohana GK, Seetha P, TamilMoli P, Hanapi MJ. 2011. Anthropometric study among adults of different ethnicity in Malaysia. Int J Phys Sci. 6(4):777–788.
  • Kim JH, Han JW, Kim DY, Baek YS. 2013. Design of a walking assistance lower limb exoskeleton for paraplegic patients and hardware validation using CoP. Int J Adv Robot Syst. 10:1–13.
  • Lim DH, Kim WS, Kim HJ, Han CS. 2017. Development of real-time gait phase detection system for a lower extremity exoskeleton robot. Int J Precis Eng Manuf. 18(5):681–687.
  • Liu F, Cheng W, He L. 2012. Finite element analysis of portable exoskeleton based on ergonomics parameters model. Appl Mech Mater. 215–216:168–173.
  • Mooney LM, Rouse EJ, Herr HM. 2014. Autonomous exoskeleton reduces metabolic cost of human walking. J Neuroeng Rehabil. 11:151.
  • Muscolino JE, editor. 2010. Effects of physical stress on bone. In: Kinesiology: the skeletal system and muscle function. 2nd ed. Amsterdam: Elsevier; p. 47–49.
  • Puyuelo-Quintana G, Cano-de-la-Cuerda R, Plaza-Flores A, Garces-Castellote E, Sanz-Merodio D, Goñi-Arana A, Marín-Ojea J, García-Armada E. 2020. A new lower limb portable exoskeleton for gait assistance in neurological patients: a proof of concept study. J Neuroeng Rehabil. 17:60.
  • Sa Pina D, Fernandes AA, Jorge RN, Gabriel J. 2018. Designing the mechanical frame of an active exoskeleton for gait assistance. Adv Mech Eng. 10(2):1–8.
  • Sanchez-Villamañan MDC, Gonzalez-Vargas J, Torricelli D, Moreno JC, Pons JL. 2019. Compliant lower limb exoskeletons: a comprehensive review on mechanical design principles. J Neuroeng Rehabil. 16(1):55.
  • Shaari NLA, Isa ISM, Jun TC. 2015. Torque analysis of the lower limb exoskeleton robot design. ARPN J Eng Appl Sci. 10:9140–9149.
  • Taifa IW, Desai DA. 2017. Anthropometric measurements for ergonomic design of student’s furniture in India. Eng Sci Technol. 20(1):232–239.
  • Wicaksono RA, Hariyanto SD, Prihandoko P, Prihandana GS, Sriani T. 2016. Design and analysis of exoskeleton as a rehabilitation device. Appl Mech Mater. 842:423–429.
  • Zhu Y, Zhang G, Zhang C, Liu G, Zhao J. 2015. Biomechanical modelling and load-carrying simulation of lower limb exoskeleton. Biomed Mater Eng. 26(s1):S729–S738.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.