416
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Role of the left coronary artery geometry configuration in atherosusceptibility: CFD simulations considering sPTT model for blood

, , , &
Pages 1488-1503 | Received 12 Oct 2020, Accepted 21 Feb 2021, Published online: 04 Mar 2021

References

  • ANSYS. 2009. 6.2.2 Mesh Quality. ANSYS FLUENT 120 User’s Guid.
  • ANSYS. 2016. ANSYS Fluent Tutorial Guide 18.0. Canonsburg: ANSYS Inc.
  • Bentzon JF, Otsuka F, Virmani R, Falk E. 2014. Mechanisms of plaque formation and rupture. Circ Res. 114(12):1852–1866.
  • Betts JG, DeSaix P, Johnson E, Johnson JE, Korol O, Kruse DH, Poe B, Wise JA, Womble M, Young KA. 2013. Anatomy and Physiology. Houston, TX: OpenStax.
  • Bodnár T, Sequeira A, Prosi M. 2011. On the shear-thinning and viscoelastic effects of blood flow under various flow rates. Appl Math Comput. 217(11):5055–5067.
  • Boileau E, Pant S, Roobottom C, Sazonov I, Deng J, Xie X, Nithiarasu P. 2017. Estimating the accuracy of a reduced-order model for the calculation of fractional flow reserve (FFR). Int J Numer Method Biomed Eng. 34(1):e2908.
  • Campo-Deaño L, Dullens RPA, Aarts DGAL, Pinho FT, Oliveira MSN. 2013. Viscoelasticity of blood and viscoelastic blood analogues for use in polydymethylsiloxane in vitro models of the circulatory system. Biomicrofluidics. 7(3):034102–034111.
  • Chen X, Dai J, Lin J, Wu Y, Ouyang J, Huang M, Zhuang J, Fang Y, Wu J. 2020. Image-based morphometric studies of human coronary artery bifurcations with/without coronary artery disease. Comput Methods Biomech Biomed Eng. 1–17.
  • Dahiru T. 2011. P-Value, a true test of statistical significance? A cautionary note. Ann Ibadan Postgrad Med. 6(1):692–692.
  • Dong J, Sun Z, Inthavong K, Tu J. 2015. Fluid-structure interaction analysis of the left coronary artery with variable angulation. Comput Methods Biomech Biomed Engin. 18(14):1500–1508.
  • Drake RL, Vogl AW, Mitchell AWM. 2015. Gray’s anatomy for students. 3rd ed. Philadelphia: Churchill Livingstone/Elsevier.
  • Evans JD. 1995. Straightforward statistics for the behavioral sciences. Pacific Grove: Brooks/Cole Pub Co.
  • Gallo D, Isu G, Massai D, Pennella F, Deriu MA, Ponzini R, Bignardi C, Audenino A, Rizzo G, Morbiducci U. 2014. A survey of quantitative descriptors of arterial flows. In: Lima R, Imai Y, Ishikawa T, Oliveira MSN, editors. Vis Simul Complex Flows Biomed Eng. Dordrecht: Springer Netherlands; p. 1–24.
  • Giannoglou GD, Antoniadis AP, Chatzizisis YS, Louridas GE. 2010. Difference in the topography of atherosclerosis in the left versus right coronary artery in patients referred for coronary angiography. BMC Cardiovasc Disord. 10(1):26.
  • Giannopoulos AA, Chatzizisis YS, Maurovich-Horvat P, Antoniadis AP, Hoffmann U, Steigner ML, Rybicki FJ, Mitsouras D. 2016. Quantifying the effect of side branches in endothelial shear stress estimates. Atherosclerosis. 251:213–218.
  • Good BC, Deutsch S, Manning KB. 2016. Hemodynamics in a pediatric ascending aorta using a viscoelastic pediatric blood model. Ann Biomed Eng. 44(4):1019–1035.
  • He X, Ku DN. 1996. Pulsatile flow in the human left coronary artery bifurcation: Average conditions. J Biomech Eng. 118(1):74–82.
  • Johnston BM, Johnston PR, Corney S, Kilpatrick D. 2004. Non-Newtonian blood flow in human right coronary arteries: steady state simulations. J Biomech. 37(5):709–720.
  • Karimi A, Navidbakhsh M, Shojaei A, Hassani K, Faghihi S. 2014. Study of plaque vulnerability in coronary artery using Mooney-Rivlin model: a combination of finite element and experimental method. Biomed Eng – Appl Basis Commun. 26(1):1–7.
  • Libby P, Theroux P. 2005. Pathophysiology of coronary artery disease. Circulation. 111(25):3481–3488.
  • Lodi Rizzini M, Gallo D, De Nisco G, D'Ascenzo F, Chiastra C, Bocchino PP, Piroli F, De Ferrari GM, Morbiducci U. 2020. Does the inflow velocity profile influence physiologically relevant flow patterns in computational hemodynamic models of left anterior descending coronary artery? Med Eng Phys. 82:58–69.
  • Mackay J, Mensah GA. 2004. The atlas of heart disease and stroke. Geneva, Switzerland: World Health Organization.
  • Malek AM, Alper SL, Izumo S. 1999. Hemodynamic shear stress and its role in atherosclerosis. J Am Med Assoc. 282(21):2035–2042.
  • Malvè M, Gharib AM, Yazdani SK, Finet G, Martínez MA, Pettigrew R, Ohayon J. 2015. Tortuosity of coronary bifurcation as a potential local risk factor for atherosclerosis: CFD steady state study based on in vivo dynamic CT measurements. Ann Biomed Eng. 43(1):82–93.
  • Pinho N, Castro CF, António CC, Bettencourt N, Sousa LC, Pinto SIS. 2019. Correlation between geometric parameters of the left coronary artery and hemodynamic descriptors of atherosclerosis: FSI and statistical study. Med Biol Eng Comput. 57(3):715–729.
  • Pinho N, Sousa LC, Castro CF, António CC, Carvalho M, Ferreira W, Ladeiras-Lopes R, Ferreira ND, Braga P, Bettencourt N, et al. 2019. The impact of the right coronary artery geometric parameters on hemodynamic performance. Cardiovasc Eng Technol. 10(2):257–270.
  • Pinto SIS, Romano E, António CC, Sousa LC, Castro CF. 2020. The impact of non-linear viscoelastic property of blood in right coronary arteries hemodynamics — a numerical implementation. Int J Non Linear Mech. 123:103477 (1–14).
  • Sakakura K, Nakano M, Otsuka F, Ladich E, Kolodgie FD, Virmani R. 2013. Pathophysiology of atherosclerosis plaque progression. Hear Lung Circ. 22(6):399–411.
  • Song J, Kouidri S, Bakir F. 2020. Numerical study of hemodynamic and diagnostic parameters affected by stenosis in bifurcated artery. Comput Methods Biomech Biomed Engin. 23(12):894–905.
  • Sousa LC, Castro CF, António CC, Santos AMF, dos Santos RM, Castro PMAC, Azevedo E, Tavares JMRS. 2014. Toward hemodynamic diagnosis of carotid artery stenosis based on ultrasound image data and computational modeling. Med Biol Eng Comput. 52(11):971–983.
  • Tarbell JM. 2003. Mass transport in arteries and the localization of atherosclerosis. Annu Rev Biomed Eng. 5(1):79–118.
  • Womersley JR. 1955. Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J Physiol. 127(3):553–563.
  • Xue Y, Hellmuth R, Shin D. 2020. Formation of vortices in idealised branching vessels: a CFD benchmark study. Cardiovasc Eng Technol. 11(5):544–559.
  • Zhang J-M, Luo T, Tan SY, Lomarda AM, Wong ASL, Keng FYJ, Allen JC, Huo Y, Su B, Zhao X, et al. 2015. Hemodynamic analysis of patient-specific coronary artery tree. Int J Numer Method Biomed Eng. 31(4):e02708.
  • Zhong L, Zhang J, Su B, Tan RS, Allen JC, Kassab GS. 2018. Application of patient-specific computational fluid dynamics in coronary and intra-cardiac flow simulations: challenges and opportunities. Front Physiol. 9:742.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.