360
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Inverse identification of hyperelastic constitutive parameters of skeletal muscles via optimization of AI techniques

, , , , &
Pages 1647-1659 | Received 06 Jan 2021, Accepted 17 Mar 2021, Published online: 31 Mar 2021

References

  • Bergstra J, Bengio Y. 2012. Random search for hyper-parameter optimization. J Mach Learn Res. 13(1):281–305.
  • Böl M, Ehret AE, Leichsenring K, Weichert C, Kruse R. 2014. On the anisotropy of skeletal muscle tissue under compression. Acta Biomater. 10(7):3225–3234.
  • Breiman L. 1996. Bagging predictors. Mach Learn. 24(2):123–140.
  • Breiman L. 2001. Random forests. Mach Learn. 45(1):5–32.
  • Brochu E, Cora VM, et al. 2010. A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. Mach Learn. 12(4):1–49.
  • Bui D-K, Nguyen T, Chou J-S, Nguyen-Xuan H, Ngo TD. 2018. A modified firefly algorithm-artificial neural network expert system for predicting compressive and tensile strength of high-performance concrete. Constr Build Mater. 180(20):320–333.
  • Castillo ED, Reis MS. 2020. Bayesian predictive optimization of multiple and profile response systems in the process industry: a review and extensions. Chemometr Intell Lab. 206:104121.
  • Chawla A, Mukherjee S, Karthikeyan B. 2009. Characterization of human passive muscles for impact loads using genetic algorithm and inverse finite element methods. Biomech Model Mechanobiol. 8(1):67–76.
  • Dao TT, Tho MH. 2018. A systematic review of continuum modeling of skeletal muscles: current trends, limitations, and recommendations. Appl Bionics Biomech. 2018:7631818.
  • de Vries WHK, Veeger HEJ, Baten CTM, van der Helm FCT. 2016. Can shoulder joint reaction forces be estimated by neural networks? J Biomech. 49(1):73–79.
  • Fregly BJ, Besier TF, Lloyd DG, Delp SL, Banks SA, Pandy MG, D'Lima DD. 2012. Grand challenge competition to predict in vivo knee loads. J Orthop Res. 30(4):503–513.
  • Gómez F, Lorza R, Bobadilla M, García R. 2017. Improving the process of adjusting the parameters of finite element models of healthy human intervertebral discs by the multi-response surface method. Materials. 10(10):1116.
  • Gras L-L, Mitton D, Viot P, Laporte S. 2012. Hyper-elastic properties of the human sternocleidomastoideus muscle in tension. J Mech Behav Biomed Mater. 15:131–140.
  • Ho TK. 1998. The random subspace method for constructing decision forests. IEEE Trans Pattern Anal Mach Intell. 20(8):832–844.
  • Holzapfel GA, Gasser TC, Ogden RW. 2000. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast Phys Sci Solids. 61(1–3):1–48.
  • Izquierdo E, Zurita-Milla R. 2020. An evaluation of guided regularized random forest for classification and regression tasks in remote sensing. Int J Appl Earth Obs. 88:1–13.
  • Jeung M, Baek S, Beom J, Cho KH, Her Y, Yoon K. 2019. Evaluation of random forest and regression tree methods for estimation of mass first flush ratio in urban catchments. J Hydrol. 575:1099–1110.
  • Jones DR, Schonlau M, Welch WJ. 1998. Efficient global optimization of expensive black-box functions. J Global Optim. 13(4):455–492.
  • Liang L, Liu M, Martin C, Elefteriades JA, Sun W. 2017. A machine learning approach to investigate the relationship between shape features and numerically predicted risk of ascending aortic aneurysm. Biomech Model Mechanobiol. 16(5):1519–1533.
  • Lipu MSH, Ayob A, Saad MHM, et al. 2018. State of charge estimation for lithium-ion battery based on random forests technique with gravitational search algorithm. 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Sabah, Malaysia: IEEE.
  • Liu GR, Han X. 2013. Computational inverse techniques in nondestructive evaluation. Boca Raton: CRC press.
  • Liu S, Sang J, Zhang Y, Zhao L, Liu G. 2020. An inverse procedure for characterization of material parameters of passive skeletal muscle using FEM and experimental data. J Theor App Mech-Pol. 58(1):247–259.
  • Loocke VM, Simms C, Lyons CG. 2009. Viscoelastic properties of passive skeletal muscle in compression-cyclic behaviour. J Biomech. 42(8):1038–1048.
  • Lostado R, García RE, Martinez RF. 2016. Optimization of operating conditions for a double-row tapered roller bearing. Int J Mech Mater Des. 12(3):353–373.
  • Lostado R, Martínez DPFJ, Fernández R, et al. 2011. Using genetic algorithms to optimize the material behaviour model in finite element models of processes with cyclic loads. J Strain Anal Eng. 46(2):143–159.
  • Lostado R, Martinez RF, Mac Donald BJ, Villanueva PM. 2015a. Combining soft computing techniques and the finite element method to design and optimize complex welded products. ICA. 22(2):153–170.
  • Lostado R, Martinez RF, Mac Donald BJ. 2015b. Determination of the contact stresses in double-row tapered roller bearings using the finite element method, experimental analysis and analytical models. J Mech Sci Technol. 29(11):4645–4656.
  • Lu Y, Pulasani PR, Derakhshani R, Guess TM. 2013. Application of neural networks for the prediction of cartilage stress in a musculoskeletal system. Biomed Signal Process Control. 8(6):475–482.
  • Macedo SÍ, Lorza RL, García RE, et al. 2019. Finite element model updating combined with multi-response optimization for hyper-elastic materials characterization. Materials. 12(7):1019.
  • Mohammadkhah M, Murphy P, Simms C. 2016. The in vitro passive elastic response of chicken pectoralis muscle to applied tensile and compressive deformation. J Mech Behav Biomed Mater. 62:468–480.
  • Nie X, Cheng J, Chen W, et al. 2011. Dynamic tensile response of porcine muscle. J Appl Mech. 78(2):1–5.
  • Peters J, Baets BD, Verhoest NEC, Samson R, Degroeve S, Becker PD, Huybrechts W. 2007. Random forests as a tool for ecohydrological distribution modelling. Ecol Model. 207(2–4):304–318.
  • Procházka A, Vyšata O, Vališ M, Ťupa O, Schätz M, Mařík V. 2015. Bayesian classification and analysis of gait disorders using image and depth sensors of Microsoft Kinect. Digit Signal Process. 47:169–177.
  • Qi C, Fourie A, Ma G, Tang X, Du X. 2018. Comparative study of hybrid artificial intelligence approaches for predicting hangingwall stability. J Comput Civ Eng. 32(2):04017086.
  • Shahriari B, Swersky K, Wang Z, Adams RP, de Freitas N. 2016. Taking the human out of the loop: a review of Bayesian optimization. Proc IEEE. 104(1):148–175.
  • Shin S, Lee Y, Kim M, Park J, Lee S, Min K. 2020. Deep neural network model with Bayesian hyperparameter optimization for prediction of NOx at transient conditions in a diesel engine. Eng Appl Artif Intel. 94:103761.
  • Silva MET, Parente MPL, Brandão S, Mascarenhas T, Natal Jorge RM. 2018. Characterization of the passive and active material parameters of the pubovisceralis muscle using an inverse numerical method. J Biomech. 71(11):100–110.
  • Sjogaard G, Saltin B. 1982. Extra- and intracellular water spaces in muscles of man at rest and with dynamic exercise. Am J Physiol-Reg I. 243(3):271–280.
  • Sligtenhorst VC, Cronin DS, Brodland GW. 2006. High strain rate compressive properties of bovine muscle tissue determined using a split Hopkinson bar apparatus. J Biomech. 39(10):1852–1858.
  • Takaza M, Moerman KM, Gindre J, Lyons G, Simms CK. 2013. The anisotropic mechanical behaviour of passive skeletal muscle tissue subjected to large tensile strain. J Mech Behav Biomed Mater. 17:209–220.
  • Wang Y, Sang J, Ao R, Ma Y, Fu B. 2020. Numerical simulation of deformed red blood cell by utilizing neural network approach and finite element analysis. Comput Methods Biomech Biomed Engin. 23(15):1190–1200.
  • Wheatley BB, Morrow DA, Odegard GM, Kaufman KR, Haut Donahue TL. 2016. Skeletal muscle tensile strain dependence: hyperviscoelastic nonlinearity. J Mech Behav Biomed. 53:445–454.
  • Wheatley BB, Odegard GM, Kaufman KR, Donahue TLH. 2016. How does tissue preparation affect skeletal muscle transverse isotropy? J Biomech. 49(13):3056–3060.
  • Yousefi A-AK, Nazari MA, Perrier P, Panahi MS, Payan Y. 2018. A new model of passive muscle tissue integrating collagen fibers: consequences for muscle behavior analysis. J Mech Behav Biomed Mater. 88:29–40.
  • Zhang W, Wu C, Zhong H, Li Y, Wang L. 2021. Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization. Geosci Front. 12(1):469–477.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.