354
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Patient-specific fluid–structure interaction model of bile flow: comparison between 1-way and 2-way algorithms

ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 1693-1717 | Received 08 Mar 2019, Accepted 28 Mar 2021, Published online: 26 Jun 2021

References

  • Agarwal S, Singh SP. 2016. An analysis of the effect of the peripheral viscosity on bile flow characteristics through cystic duct with stone: study of two-layer model with squeezing. Int J Eng Trends Technol. 32:309–314.
  • Agarwal S, Sinha AK, Singh SP. 2012a. A theoretical analysis of the effect of the non-Newtonian bile flow on the flow characteristics in the diseased cystic duct. Int J Appl Math Mech. 8:92–103.
  • Agarwal S, Sinha AK, Singh SP. 2012b. Effect of the plug flow on the flow characteristics of bile through diseased cystic duct: Casson model analysis. Adv Appl Sci Res. 3(2):1098–1106.
  • Ahamed M, Atique S, Munshi M, Koiranen T. 2017. A concise description of one way and two way coupling methods for fluid-structure interaction problems. Am J Eng Res. 6:86–89.
  • Ahmed S, Šutalo ID, Kavnoudias H, Madan A. 2007. Fluid structure interaction modelling of a patient specific cerebral aneurysm: effect of hypertension and modulus of elasticity. Proc 16th Australas Fluid Mech Conf 16AFMC. [place unknown]; p. 75–81.
  • Al-Atabi M, Chin SB, Luo XY. 2010. Experimental investigation of the flow of bile in patient specific cystic duct models. J Biomech Eng. 132:1–6.
  • Al-Atabi M, Ooi RC, Luo XY, Chin SB, Bird NC. 2012. Computational analysis of the flow of bile in human cystic duct. Med Eng Phys. 34(8):1177–1183. http://dx.doi.org/10.1016/j.medengphy.2011.12.006.
  • Amabili M, Balasubramanian P, Bozzo I, Breslavsky ID, Ferrari G, Franchini G, Giovanniello F, Pogue C. 2020. Nonlinear dynamics of human aortas for material characterization. Phys Rev X. 10:011015. https://link.aps.org/doi/10.1103/PhysRevX.10.011015.
  • Baghaei M, Kavian M, Ghodsi S, Razavi SE. 2021. Numerical investigation of bile secretion and pressure rise in obstructed human common bile duct numerical investigation of bile secretion and pressure rise in obstructed human common bile duct. J Appl Fluid Mech. 14:275–286.
  • Behar J. 2013. Physiology and pathophysiology of the biliary tract: the gallbladder and sphincter of oddi—a review. ISRN Physiol. 2013:1–15. https://www.hindawi.com/journals/isrn/2013/837630/.
  • Benias PC, Weine DM, Jacobson IM. 2018. Diseases of the bile ducts. In: Lawrence S. Friedman and Paul Martin (Eds.), Handb Liver Dis. Philadelphia: Elsevier; p. 479–498. https://linkinghub.elsevier.com/retrieve/pii/B9780323478748000353.
  • Benra F-K, Dohmen HJ, Pei J, Schuster S, Wan B. 2011. A comparison of one-way and two-way coupling methods for numerical analysis of fluid-structure interactions. J Appl Math. 2011:1–16. http://www.hindawi.com/journals/jam/2011/853560/.
  • Bhuvana R, Anburajan M. 2013. Patient specific mimicing CAD models of biliary tract with and without gallstone for CFD analysis of bile dynamics. Int Conf Commun Signal Process ICCSP 2013 - Proc, Melmaruvathur, India. p. 658–662.
  • Bird NC, Ooi RC, Luo XY, Chin SB, Johnson AG. 2006. Investigation of the functional three-dimensional anatomy of the human cystic duct: a single helix? Clin Anat. 19(6):528–534.
  • Body L, Højgaard L, Grønvall S, Stage JG. 1996. Human gallbladder pressure and volume: validation of a new direct method for measurements of gallbladder pressure in patients with acute cholecystitis. Clin Physiol. 16(2):145–156.
  • Brown AJ, Teng Z, Evans PC, Gillard JH, Samady H, Bennett MR. 2016. Role of biomechanical forces in the natural history of coronary atherosclerosis. Nat Rev Cardiol. 13(4):210–220.
  • Çerçi SS, Özbek FM, Çerçi C, Baykal B, Eroğlu HE, Baykal Z, Yıldız M, Sağlam S, Yeşildağ A. 2009. Gallbladder function and dynamics of bile flow in asymptomatic gallstone disease. WJG. 15(22):2763–2767.
  • Chandra S, Raut SS, JA, Biederman RW, Doyle M, Muluk SC, Finol EA. 2013. Fluid-structure interaction modeling of abdominal aortic aneurysms: the impact of patient-specific inflow conditions and fluid/solid coupling. J Biomech Eng. 135:81001. https://asmedigitalcollection.asme.org/biomechanical/article/doi/10.1115/1.4024275/371109/FluidStructure-Interaction-Modeling-of-Abdominal.
  • Coene P-P, Groen AK, Davids PHP, Hardeman M, Tytgat GNJ, Huibregtse K, P-Plo C. 1994. Bile viscosity in patients with biliary drainage. Effect of co-trimoxazole and N-acetylcysteine and role in stent clogging. Scand J Gastroenterol. 29(8):757–763.
  • Csendes A, Kruse A, Funch-Jensen P, Oster MJ, Ornsholt J, Amdrup E. 1979. Pressure measurements in the biliary and pancreatic duct systems in controls in patients with gallstones, previous cholecystectomy, or common bile duct stones. Gastroenterology. 77(6):1203–1210.
  • Diehl A. 1991. Epidemiology and natural history of gallstone disease. Gastroenterol Clin North Am. 20(1):1–19.
  • Dodds WJ, Hogan WJ, Geenen JE. 1989. Motility of the biliary system. In: Schultz S, editor. Handbook of physiology, the gastrointestinal system, motility and circulation. Hoboken, NJ: American Physiological Society; p. 1055–1101.
  • Ezkurra M, Esnaola JA, Etxeberria U, Lertxundi U, Colomo L, Begiristain M, Zurutuza I. 2018. Analysis of one-way and two-way FSI approaches to characterise the flow regime and the mechanical behaviour during closing manoeuvring operation of a butterfly valve. Int J Mech Mater Eng. 12:409–415.
  • Holzapfel GA, Gasser TC, Ogden RW. 2000. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast. 61(1/3):1–48.
  • Hoque KE, Ferdows M, Sawall S, Tzirtzilakis EE. 2020. Engineering the effect of hemodynamic parameters in patient-based coronary artery models with serial stenoses: normal and hypertension cases. Comput Methods Biomech Biomed Eng. 23(9):467–475.
  • Howard PJ, Murphy GM, Dowling RH. 1991. Gallbladder emptying patterns in response to a normal meal in healthy subjects and patients with gall stones: ultrasound study. Gut. 32(11):1406–1411.
  • Jahanzamin J, Fatouraee N, Nasiraei-Moghaddam A. 2019. Effect of turbulent models on left ventricle diastolic flow patterns simulation. Comput Methods Biomech Biomed Eng. 22(15):1229–1238.
  • Kay Washington M. 2009. Gallbladder and extrahepatic bile ducts. In: Noel Weidner, Richard Cote, Saul Suster and Lawrence M. Weiss (Eds.), Modern Surgical Pathology. 2nd edition. Philadelphia: Elsevier Inc.; p. 960–975. http://dx.doi.org/10.1016/B978-1-4160-3966-2.00028-X.
  • Khan MH, Howard TJ, Fogel EL, Sherman S, Mchenry L, Watkins JL, Canal DF, Lehman GA. 2007. Frequency of biliary complications after laparoscopic cholecystectomy detected by ERCP: experience at a large tertiary referral center. Gastrointest Endosc. 65(2):247–252.
  • Kuchumov AG. 2016. Mathematical modeling of the peristaltic lithogenic bile flow through the duct at papillary stenosis as a tapered finite-length tube. Russ J Biomech. 20:77–96.
  • Kuchumov AG. 2019. Biomechanical model of bile flow in the biliary system. Russ J Biomech. 23:224–248.
  • Kuchumov AG, Gilev V, Popov V, Samartsev V, Gavrilov V. 2014. Non-Newtonian flow of pathological bile in the biliary system: experimental investigation and CFD simulations. Korea-Aust Rheol J. 26(1):81–90.
  • Kuchumov AG, Kamaltdinov M, Selyaninov A, Samartsev V. 2019. Numerical simulation of biliary stent clogging. Ser Biomech. 33:3–15.
  • Kuchumov AG, Kamaltdinov MR, Samartsev VA, Khairulin AR, Ivashova YA, Taiar R. 2020. Patient-specific simulation of a gallbladder refilling based on MRI and ultrasound in vivo measurements. AIP Conf Proc 2216: 060004. http://aip.scitation.org/doi/abs/10.1063/5.0003367.
  • Kuchumov AG, Nyashin YI, Samarcev VA, Gavrilov VA. 2013a. Modelling of the pathological bile flow in the duct with a calculus. Acta Bioeng Biomech. 15:9–17.
  • Kuchumov AG, Nyashin YI, Samartsev VA. 2013b. CFD approach to bile flow problems solution. 18th Int Symp Comput Biomech Ulm; May 13–14; Ulm. p. 67–68.
  • Kuchumov AG, Nyashin YI, Samartsev VA. 2015. Modelling of peristaltic bile flow in the papilla ampoule with stone and in the papillary stenosis case: application to reflux investigation. In: Goh J, Lim CT, editors. Proc 7th WACBE World Congress on Bioengineering Singapore, 2015. p. 158–161. Switzerland: Springer International Publishing.
  • Kuchumov АG, Nyashin YI, Samartsev VА, Gavrilov VА. Mesnard М. 2011. Biomechanical approach to biliary system modelling as a step towards “Virtual Physiological Human” project. Russ J Biomech. 15:28–42. http://vestnik.pstu.ru/biomech/archives/?id=&folder_id=2160.
  • Kwak BR, Bäck M, Bochaton-Piallat M-L, Caligiuri G, Daemen MJAP, Davies PF, Hoefer IE, Holvoet P, Jo H, Krams R, et al. 2014. Biomechanical factors in atherosclerosis: mechanisms and clinical implications. Eur Heart J. 35(43):3013–3020.
  • Larsen TK, Qvist N. 2007. The influence of gallbladder function on the symptomatology in gallstone patients, and the outcome after cholecystectomy or expectancy. Dig Dis Sci. 52(3):760–763.
  • Li WG, Luo XY, Chin SB, Hill NA, Johnson AG, Bird NC. 2008a. Non-Newtonian bile flow in elastic cystic duct: one- and three-dimensional modeling. Ann Biomed Eng. 36(11):1893–1908.
  • Li WG, Luo XY, Hill NA, Smythe A, Chin SB, Johnson a. G, Bird N. 2008b. Correlation of mechanical factors and gallbladder pain. Comput Math Methods Med. 9(1):27–45. http://www.hindawi.com/journals/cmmm/2008/270169/.
  • Li WG, Luo XY, Johnson AG, Hill NA, Bird N, Chin SB. 2007. One-dimensional models of the human biliary system. J Biomech Eng. 129(2):164–173.
  • Lo RC, Huang WL, Fan YM. 2015. Evaluation of bile reflux in HIDA images based on fluid mechanics. Comput Biol Med. 60:51–65.
  • Luo X, Li W, Bird N, Chin SB, Hill NA, Johnson AG. 2007. On the mechanical behavior of the human biliary system. WJG. 13(9):1384–1392.
  • Luo XY, Chin SB, Ooi RC, Clubb M, Johnson AG, Bird N. 2004. The rheological properties of human bile. In: Recent Advances in Fluid Mechanics: Proceedings of the Fourth International Conference on Fluid Mechanics 20-23 July, 2004, Dalian, China. Beijing: Tsinghua University Press; p. 876.
  • Lv Y, Lau W, Wu H, Chang S, NingLiu N, Li Y, Deng J. 2015. Etiological causes of intrahepatic and extrahepatic bile duct dilatation. Int J New Technol Res. 1:263634.
  • Maiti S, Misra JC. 2011. Peristaltic flow of a fluid in a porous channel: a study having relevance to flow of bile within ducts in a pathological state. Int J Eng Sci. 49(9):950–966. http://dx.doi.org/10.1016/j.ijengsci.2011.05.006.
  • Malek AM, Alper SL, Izumo S. 1999. Hemodynamic shear stress and its role in atherosclerosis. JAMA. 282(21):2035–2042.
  • Marakhovskiy Y. 2003. Gallbladder disease: current state. Russ J Gastroentorology Hepatol Coloproctol. 13:81–92. In Russian.
  • Marciani L, Cox EF, Hoad CL, Totman JJ, Costigan C, Singh G, Shepherd V, Chalkley L, Robinson M, Ison R, et al. 2013. Effects of various food ingredients on gall bladder emptying. Eur J Clin Nutr. 67:1182–1187. http://dx.doi.org/10.1038/ejcn.2013.168.
  • Minh NN, Obara H, Shimokasa K, Zhu J. 2019. Tensile behavior and extensional viscosity of bile. Biorheology. 56(4):237–252. https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/BIR-190216.
  • Mohan S, Shashidhara T, Sahil M, Akarsh R. 2014. Gallbladder stones: surgical treatment. Int J Res Med Sci. 2(1):285. http://www.scopemed.org/?mno=48209.
  • Oliveira D, Rosa SA, Tiago J, Ferreira RC, Agapito AF, Sequeira A. 2019. Bicuspid aortic valve aortopathies: an hemodynamics characterization in dilated aortas. Comput Methods Biomech Biomed Eng. 22(8):815–826.
  • Ooi RC, Luo XY, Chin SB, Johnson AG, Bird NC. 2004. The flow of bile in the human cystic duct. J Biomech. 37(12):1913–1922. http://dx.doi.org/10.1016/j.jbiomech.2004.02.029.
  • Opie EL. 1901. The relation of cholelithiasis to disease of the pancreas and to fat necrosis. Johns Hopkins Hosp Bull. 12:19–21.
  • Portincasa P, Moschetta A, Palasciano G. 2006. Cholesterol gallstone disease. Lancet. 368(9531):230–239.
  • Qiao Y, Zeng Y, Ding Y, Fan J, Luo K, Zhu T. 2019. Numerical simulation of two-phase non-Newtonian blood flow with fluid-structure interaction in aortic dissection. Comput Methods Biomech Biomed Eng. 22(6):620–630.
  • Radunovic M, Lazovic R, Popovic N, Magdelinic M, Bulajic M, Radunovic L, Vukovic M, Radunovic M. 2016. Complications of laparoscopic cholecystectomy: our experience from a retrospective analysis. Open Access Maced J Med Sci. 4(4):641–646.
  • Reymond P, Crosetto P, Deparis S, Quarteroni A, Stergiopulos N. 2012. Physiological simulation of blood flow in the aorta: comparison of hemodynamic indices as predicted by 3-D FSI, 3-D rigid wall and 1-D models. Med Eng Phys. 35:1–8.
  • Rodkiewicz CM, Otto WJ. 1979. On the Newtonian behavior of bile. J Biomech. 12(8):609–612.
  • Rodkiewicz CM, Otto WJ, Scott GW. 1979. Empirical relationships of bile. J Biomech. 12(6):411–413.
  • Samady H, Eshtehardi P, McDaniel MC, Suo J, Dhawan SS, Maynard C, Timmins LH, Quyyumi AA, Giddens DP. 2011. Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease. Circulation. 124(7):779–788.
  • Samarcev VA. 2005. Paths of the improvement of the cholelithiasis treatment at the high operative risk groups: optimization of the diagnostics methods, landmark endoscopic and less-invasive tratment, predicting and prophylactics of the complications. Perm, Russian Federation: Academician EA Wagner Perm State Medical Academy.
  • Stinton LM, Shaffer EA. 2012. Epidemiology of gallbladder disease: cholelithiasis and cancer. Gut Liver. 6(2):172–187.
  • Taki-Eldin A, Badawy AE. 2018. Outcome of laparoscopic cholecystectomy in patients with gallstone disease at a secondary level care hospital. Arq Bras Cir Dig. 31:e1347.
  • Tanaka M, Ikeda S, Nakayama F. 1984. Change in bile duct pressure responses after cholecystectomy: loss of gallbladder as a pressure reservoir. Gastroenterology. 87(5):1154–1159. http://dx.doi.org/10.1016/S0016-5085. (84)80078-5
  • Tao X, Gao P, Jing L, Lin Y, Sui B. 2015. Subject-specific fully-coupled and one-way fluid-structure interaction models for modeling of carotid atherosclerotic plaques in humans. Med Sci Monit. 21:3279–3290. http://www.medscimonit.com/abstract/index/idArt/895137.
  • Thondapu V, Bourantas CV, Foin N, Jang IK, Serruys PW, Barlis P. 2017. Basic science for the clinician: biomechanical stress in coronary atherosclerosis: emerging insights from computational modelling. Eur Heart J. 38:81–92.
  • Vassilevski YV, Salamatova VY, Simakov SS. 2015. On the elasticity of blood vessels in one-dimensional problems of hemodynamics. Comput Math Math Phys. 55(9):1567–1578. Available from: http://link.springer.com/10.1134/S0965542515090134.
  • Wang X, Li X. 2011. Computational simulation of aortic aneurysm using FSI method: influence of blood viscosity on aneurismal dynamic behaviors. Comput Biol Med. 41(9):812–821. http://dx.doi.org/10.1016/j.compbiomed.2011.06.017.
  • Xu K, Yu L, Wan J, Wang S, Lu H. 2020. The influence of the elastic modulus of the plaque in carotid artery on the computed results of FFRCT. Comput Methods Biomech Biomed Eng. 23(5):201–211.
  • Yevtushenko P, Hellmeier F, Bruening J, Nordmeyer S, Falk V, Knosalla C, Kelm M, Kuehne T, Goubergrits L. 2019. Surgical aortic valve replacement: are we able to improve hemodynamic outcome? Biophys J. 117(12):2324–2336.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.