412
Views
4
CrossRef citations to date
0
Altmetric
Research Article

A modified method of computed fluid dynamics simulation in abdominal aorta and visceral arteries

, , , , , , , , & show all
Pages 1718-1729 | Received 18 Sep 2020, Accepted 31 Mar 2021, Published online: 26 Sep 2021

References

  • Behnam AJ, Herzka DA, Sheeha FT. 2011. Assessing the accuracy and precision of musculoskeletal motion tracking using cine-PC MRI on a 3.0T platform. J Biomech. 44(1):193–197.
  • Bidhult SL, Carlsson M, Steding-Ehrenborg K, Arheden H, Heiberg E. 2014. A new method for vessel segmentation based on a priori input from medical expertise in cine phase-contrast magnetic resonance imaging. J Cardiovasc Magn Reson. 16(S1):355.
  • Bonfanti M, Balabani S, Alimohammadi M, Agu O, Homer-Vanniasinkam S, Díaz-Zuccarini V. 2018. A simplified method to account for wall motion in patient-specific blood flow simulations of aortic dissection: comparison with fluid–structure interaction. Med Eng Phys. 58:72–79.
  • Boutsianis E, Guala M, Olgac U, Wildermuth S, Hoyer K, Ventikos Y, Poulikakos D. 2009. CFD and PTV steady flow investigation in an anatomically accurate abdominal aortic aneurysm. J Biomech Eng. 131(1):011008. doi:https://doi.org/10.1115/1.3002886
  • Boyd AJ, Kuhn DCS, Lozowy RJ, Kulbisky GP. 2016. Low wall shear stress predominates at sites of abdominal aortic aneurysm rupture. J Vasc Surg. 63(6):1613–1619.
  • Burris NS, Hope MD. 2015. 4D flow MRI applications for aortic disease. Magn Reson Imaging Clin N Am. 23(1):15–23.
  • Chen Z, Yu H, Shi Y, Zhu M, Wang Y, Hu X, Zhang Y, Chang Y, Xu M, Gao W, et al. 2017. Vascular remodelling relates to an elevated oscillatory shear index and relative residence time in spontaneously hypertensive rats. Sci Rep. 7(1):2007.
  • Eshtehardi P, Brown AJ, Bhargava A, Costopoulos C, Hung OY, Corban MT, Hosseini H, Gogas BD, Giddens DP, Samady H, et al. 2017. High wall shear stress and high-risk plaque: an emerging concept. Int J Cardiovasc Imaging. 33(7):1089–1099.
  • Ford LE, Feldman T, Chiu YC, Carroll JD. 1990. Hemodynamic resistance as a measure of functional impairment in aortic valvular stenosis. Circ Res. 66(1):1–7.
  • Gijsen FJH, van de Vosse FN, Janssen JD. 1999. The influence of the non-Newtonian properties of blood on the flow in large arteries: steady flow in a carotid bifurcation model. J Biomech. 32(6):601–608.
  • Grinberg L, Karniadakis GE. 2008. Outflow boundary conditions for arterial networks with multiple outlets. Ann Biomed Eng. 36(9):1496–1514.
  • Heiberg E, Markenroth BK, Arheden H. 2007. Validation of free software for automated vessel delineation and MRI flow analysis. J Cardiovasc Magn Reson. 9:375–376.
  • Jamalidinan F, Hassanabad AF, François CJ, Garcia J. 2020. Four-dimensional-flow magnetic resonance imaging of the aortic valve and thoracic aorta. Radiol Clin North Am. 58(4):753–763.
  • Jiang Y, Qiu Y, Li D, Yuan D, Zheng T, Peng L. 2019. Influence of aortic branch arteries on the hemodynamics of patient-specific type B aortic dissection following TEVAR. Med Novel Technol Devices. 4:100028.
  • Kolyva C, Biglino G, Pepper JR, Khir AW. 2012. A mock circulatory system with physiological distribution of terminal resistance and compliance: application for testing the intra-aortic balloon pump. Artif Org. 36(3):E62–E70.
  • Kung EO, Les AS, Medina F, Wicker RB, McConnell MV, Taylor CA. 2011. In vitro validation of finite-element model of AAA hemodynamics incorporating realistic outlet boundary conditions. J Biomech Eng. 133(4):041003. doi:https://doi.org/10.1115/1.4003526
  • Lan H, Updegrove A, Wilson NM, Maher GD, Shadden SC, Marsden AL. 2018. A re-engineered software interface and workflow for the open source SimVascular cardiovascular modeling package. J Biomech Eng. 140(2):024501. doi:https://doi.org/10.1115/1.4038751
  • Les AS, Shadden SC, Figueroa CA, Park JM, Tedesco MM, Herfkens RJ, Dalman RL, Taylor CA. 2010. Quantification of hemodynamics in abdominal aortic aneurysms during rest and exercise using magnetic resonance imaging and computational fluid dynamics. Ann Biomed Eng. 38(4):1288–1313.
  • Lotz J, Meier C, Leppert A, Galanski M. 2002. Cardiovascular flow measurement with phase-contrast MR imaging: Basic Facts and Implementation. Radiographics. 22(3):651–671.
  • Markl M, Bammer R, Alley MT, Elkins CJ, Draney MT, Barnett A, Moseley ME, Glover GH, Pelc NJ. 2003. Generalized reconstruction of phase contrast MRI: analysis and correction of the effect of gradient field distortions. Magn Reson Med. 50(4):791–801.
  • Markl M, Frydrychowicz A, Kozerke S, Hope M, Wieben O. 2012. 4D flow MRI. J Magn Reson Imaging. 36(5):1015–1036.
  • Oyre S, Pedersen EM, Ringgaard S, Boesiger P, Paaske WP. 1997. In vivo wall shear stress measured by magnetic resonance velocity mapping in the normal human abdominal aorta. Eur J Vasc Endovasc Surg. 13(3):263–271.
  • Peña Pérez N. Windkessel modeling of the human arterial system. 2016.
  • Piccinelli M, Vergara C, Antiga L, Forzenigo L, Biondetti P, Domanin M. 2013. Impact of hemodynamics on lumen boundary displacements in abdominal aortic aneurysms by means of dynamic computed tomography and computational fluid dynamics. Biomech Model Mechanobiol. 12(6):1263–1276.
  • Pirola S, Cheng Z, Jarral OA, O'Regan DP, Pepper JR, Athanasiou T, Xu XY. 2017. On the choice of outlet boundary conditions for patient-specific analysis of aortic flow using computational fluid dynamics. J Biomech. 60:15–21.
  • Safian RD, Textor SC. 2001. Renal–artery stenosis. N Engl J Med. 344(6):431–442.
  • Scott RAP, Wilson NM, Ashton HA, Kay DN. 1993. Is surgery necessary for abdominal aortic aneurysm less than 6 cm in diameter? Lancet. 342(8884):1395–1396.
  • Soudah E, Ng EYK, Loong TH, Bordone M, Pua U, Narayanan S. 2013. CFD modelling of abdominal aortic aneurysm on hemodynamic loads using a realistic geometry with CT. Comput Math Methods Med. 2013:1–9.
  • Srichai MB, Lim RP, Wong S, Lee VS. 2009. Cardiovascular applications of phase-contrast MRI. AJR Am J Roentgenol. 192(3):662–675.
  • Stalder AF, et al. 2011. Patient specific hemodynamics: combined 4D flow-sensitive MRI and CFD. In: Wittek A, Nielsen P, Miller K. (Eds.), Computational Biomechanics for Medicine, pp. 27–38. New York, NY: Springer.
  • Sugiyama M, Takehara Y, Kawate M, Ooishi N, Terada M, Isoda H, Sakahara H, Naganawa S, Johnson KM, Wieben O, et al. 2020. Optimal plane selection for measuring post-prandial blood flow increase within the superior mesenteric artery: analysis using 4D flow and computational fluid dynamics. MRMS. 19(4):366–374.
  • Suh G-Y, Les AS, Tenforde AS, Shadden SC, Spilker RL, Yeung JJ, Cheng CP, Herfkens RJ, Dalman RL, Taylor CA, et al. 2011. Hemodynamic changes quantified in abdominal aortic aneurysms with increasing exercise intensity using MR exercise imaging and image-based computational fluid dynamics. Ann Biomed Eng. 39(8):2186–2202.
  • Tang BT, Cheng CP, Draney MT, Wilson NM, Tsao PS, Herfkens RJ, Taylor CA. 2006. Abdominal aortic hemodynamics in young healthy adults at rest and during lower limb exercise: quantification using image-based computer modeling. Am J Physiol Heart Circ Physiol. 291(2):H668–H676.
  • Updegrove A, Wilson NM, Merkow J, Lan H, Marsden AL, Shadden SC. 2017. Simvascular: an open source pipeline for cardiovascular simulation. Ann Biomed Eng. 45(3):525–541.
  • van Pelt R, Nguyen H, ter Haar Romeny B, Vilanova A. 2012. Automated segmentation of blood-flow regions in large thoracic arteries using 3D-cine PC-MRI measurements. Int J Comput Assist Radiol Surg. 7(2):217–224.
  • Vignon-Clementel IE, Alberto Figueroa C, Jansen KE, Taylor CA. 2006. Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput Methods Appl Mech Eng. 195(29–32):3776–3796.
  • Yiallourou TI, Kröger JR, Stergiopulos N, Maintz D, Martin BA, Bunck AC. 2012. Comparison of 4D phase-contrast MRI flow measurements to computational fluid dynamics simulations of cerebrospinal fluid motion in the cervical spine. PloS One. 7(12):e52284.
  • Yim PJ, Cebral JR, Weaver A, Lutz RJ, Soto O, Vasbinder GBC, Ho VB, Choyke PL. 2004. Estimation of the differential pressure at renal artery stenoses. Magn Reson Med. 51(5):969–977.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.