357
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Prediction of biomechanical responses of human lumbar discs - a stochastic finite element model analysis

, , , &
Pages 1730-1741 | Received 13 Nov 2020, Accepted 05 Apr 2021, Published online: 14 Jun 2021

References

  • Acaroglu ER, Iatridis JC, Setton LA, Foster RJ, Mow VC, Weidenbaum M. 1995. Degeneration and aging affect the tensile behavior of human lumbar anulus fibrosus. Spine. 20(24):2690–2701.
  • Adams MA, Dolan P. 2005. Spine biomechanics. J Biomech. 38(10):1972–1983.
  • Affolter C, Kedzierska J, Vielma T, Weisse B, Aiyangar A. 2020. Estimating lumbar passive stiffness behaviour from subject-specific finite element models and in vivo 6DOF kinematics. J Biomech. 102:109681.
  • Andrews LC, Phillips RL. 2012. Probability density function. In: Field guide to probability, random processes, and random data analysis; p. 4–4.
  • Bailey JF, Miller SL, Khieu K, O'Neill CW, Healey RM, Coughlin DG, Sayson JV, Chang DG, Hargens AR, Lotz JC. 2018. From the international space station to the clinic: how prolonged unloading may disrupt lumbar spine stability. Spine J. 18(1):7–14.
  • Bashkuev M, Reitmaier S, Schmidt H. 2020. Relationship between intervertebral disc and facet joint degeneration: a probabilistic finite element model study. J Biomech. 102:109518.
  • Desmoulin GT, Pradhan V, Milner TE. 2020. Mechanical aspects of intervertebral disc injury and implications on biomechanics. Spine. 45(8):E457–E464.
  • Ebara S, Iatridis JC, Setton LA, Foster RJ, Mow VC, Weidenbaum M. 1996. Tensile properties of nondegenerate human lumbar anulus fibrosus. Spine. 21(4):452–461.
  • Elliott DM, Setton LA. 2000. A linear material model for fiber-induced anisotropy of the anulus fibrosus. J Biomech Eng. 122(2):173–179.
  • Galbusera F, Schmidt H, Neidlinger-Wilke C, Gottschalk A, Wilke HJ. 2011. The mechanical response of the lumbar spine to different combinations of disc degenerative changes investigated using randomized poroelastic finite element models. Eur Spine J. 20(4):563–571.
  • Goel VK, Monroe BT, Gilbertson LG, Brinckmann P. 1995. Interlaminar shear stresses and laminae separation in a disc: Finite element analysis of the l3-l4 motion segment subjected to axial compressive loads. Spine. 20(6):689–698.
  • Gómez F, Lorza R, Bobadilla M, García R. 2017. Improving the process of adjusting the parameters of finite element models of healthy human intervertebral discs by the multi-response surface method. Materials (Basel). 10(10):1116.
  • Green TP, Adams MA, Dolan P. 1993. Tensile properties of the annulus fibrosus II. Ultimate tensile strength and fatigue life. Eur Spine J. 2(4):209–214.
  • Heuer F, Schmidt H, Klezl Z, Claes L, Wilke HJ. 2007. Stepwise reduction of functional spinal structures increase range of motion and change lordosis angle. J Biomech. 40(2):271–280.
  • Holzapfel GA, Schulze-Bauer CAJ, Feigl G, Regitnig P. 2005. Single lamellar mechanics of the human lumbar anulus fibrosus. Biomech Model Mechanobiol. 3(3):125–140.
  • Iatridis JC, Nicoll SB, Michalek AJ, Walter BA, Gupta MS. 2013. Role of biomechanics in intervertebral disc degeneration and regenerative therapies: What needs repairing in the disc and what are promising biomaterials for its repair? Spine J. 13(3):243–262.
  • Kiapour A, Ambati D, Hoy RW, Goel VK. 2012. Effect of graded facetectomy on biomechanics of dynesys dynamic stabilization system. Spine. 37(10):581–589.
  • Lee KK, Teo EC. 2005. Material sensitivity study on lumbar motion segment (L2-L3) under sagittal plane loadings using probabilistic method. J Spinal Disord Tech. 18(2):163–170.
  • Li G, Wang S, Passias P, Xia Q, Li G, Wood K. 2009. Segmental in vivo vertebral motion during functional human lumbar spine activities. Eur Spine J. 18(7):1013–1021.
  • Little JP, De Visser H, Pearcy MJ, Adam CJ. 2008. Are coupled rotations in the lumbar spine largely due to the osseo-ligamentous anatomy?-A modeling study. Comput Methods Biomech Biomed Eng. 11(1):95–103.
  • Liu CL, Zhong ZC, Hsu HW, Shih SL, Wang ST, Hung C, Chen CS. 2011. Effect of the cord pretension of the Dynesys dynamic stabilisation system on the biomechanics of the lumbar spine: a finite element analysis. Eur Spine J. 20(11):1850–1858.
  • Lu YM, Hutton WC, Gharpuray VM. 1996. Can variations in intervertebral disc height affect the mechanical function of the disc? Spine. 21(19):2208–2217.
  • Malakoutian M, Volkheimer D, Street J, Dvorak MF, Wilke HJ, Oxland TR. 2015. Do in vivo kinematic studies provide insight into adjacent segment degeneration? A qualitative systematic literature review. Eur Spine J. 24(9):1865–1881.
  • Marini G, Huber G, Püschel K, Ferguson SJ. 2015. Nonlinear dynamics of the human lumbar intervertebral disc. J Biomech. 48(3):479–488. http://dx.doi.org/10.1016/j.jbiomech.2014.12.006.
  • Ng HW, Teo EC. 2004. Probabilistic design analysis of the influence of material property on the human cervical spine. J Spinal Disord. 17(2):123–133.
  • Niemeyer F, Wilke HJ, Schmidt H. 2012. Geometry strongly influences the response of numerical models of the lumbar spine-a probabilistic finite element analysis. J Biomech. 45(8):1414–1423.
  • Park WM, Kim K, Kim YH. 2013. Effects of degenerated intervertebral discs on intersegmental rotations, intradiscal pressures, and facet joint forces of the whole lumbar spine. Comput Biol Med. 43(9):1234–1240. http://dx.doi.org/10.1016/j.compbiomed.2013.06.011.
  • Rohlmann A, Mann A, Zander T, Bergmann G. 2009. Effect of an artificial disc on lumbar spine biomechanics: a probabilistic finite element study. Eur Spine J. 18(1):89–97.
  • Rohlmann A, Zander T, Schmidt H, Wilke HJ, Bergmann G. 2006. Analysis of the influence of disc degeneration on the mechanical behaviour of a lumbar motion segment using the finite element method. J Biomech. 39(13):2484–2490.
  • Sato K, Kikuchi S, Yonezawa T. 1999. In vivo intradiscal pressure measurement in healthy individuals and in patients with ongoing back problems. Spine. 24(23):2468–2474.
  • Schmidt H, Galbusera F, Rohlmann A, Zander T, Wilke HJ. 2012. Effect of multilevel lumbar disc arthroplasty on spine kinematics and facet joint loads in flexion and extension: a finite element analysis. Eur Spine J. 21(S5):663–674.
  • Schmidt H, Heuer F, Drumm J, Klezl Z, Claes L, Wilke HJ. 2007. Application of a calibration method provides more realistic results for a finite element model of a lumbar spinal segment. Clin Biomech (Bristol, Avon)). 22(4):377–384.
  • Schmidt H, Heuer F, Simon U, Kettler A, Rohlmann A, Claes L, Wilke HJ. 2006. Application of a new calibration method for a three-dimensional finite element model of a human lumbar annulus fibrosus. Clin Biomech (Bristol, Avon)). 21(4):337–344.
  • Schmidt H, Kettler A, Heuer F, Simon U, Claes L, Wilke HJ. 2007. Intradiscal pressure, shear strain, and fiber strain in the intervertebral disc under combined loading. Spine. 32(7):748–755.
  • Shahraki NM, Fatemi A, Goel VK, Agarwal A. 2015. On the use of biaxial properties in modeling annulus as a Holzapfel-Gasser-Ogden material. Front Bioeng Biotechnol. 3:1–9.
  • Shan Z, Li S, Liu J, Mamuti M, Wang C, Zhao F. 2015. Correlation between biomechanical properties of the annulus fibrosus and magnetic resonance imaging (MRI) findings. Eur Spine J. 24(9):1909–1916.
  • Sharabi M, Levi-Sasson A, Wolfson R, Wade KR, Galbusera F, Benayahu D, Hans-Joachim W, Haj-Ali R. 2019. The mechanical role of the radial fiber network within the annulus fibrosus of the lumbar intervertebral disc: a finite elements study. J Biomech Eng. 141(2):021006.
  • Sharma M, Langrana NA, Rodriguez J. 1995. Role of ligaments and facets in lumbar spinal stability. Spine. 20(8):887–900.
  • Shirazi-Adl A, Ahmed AM, Shrivastava SC. 1986. A finite element study of a lumbar motion segment subjected to pure sagittal plane moments. J Biomech. 19(4):331–350.
  • Skaggs DL, Weidenbaum M, Latridis JC, Ratcliffe A, Mow VC. 1994. Regional variation in tensile properties and biochemical composition of the human lumbar anulus fibrosus. Spine. 19(12):1310–1319.
  • Skrzypiec D, Tarala M, Pollintine P, Dolan P, Adams MA. 2007. When are intervertebral discs stronger than their adjacent vertebrae? Spine. 32(22):2455–2461.
  • Somovilla-Gómez F, Iñiguez-Macedo S, Jiménez-Ruiz E, Muro-Fraguas L, Gañán-Catalina G, Leciñana-Soldevilla Á, Corral-Bobadilla M, Díaz-Bertrana-Sánchez C, Lostado-Lorza R. 2020. 3D-printed canine tibia model from clinical computed tomography data. In: Francisco Cavas-Martínez, Félix Sanz-Adan, Paz Morer Camo, Ruben Lostado Lorza, Jacinto Santamaría Peña (Ed.). Lecture Notes in Mechanical Engineering; p. 254–262. Logroño, Spain: Springer.
  • Somovilla-Gómez F, Lostado-Lorza R, Corral-Bobadilla M, Escribano-García R. 2020. Improvement in determining the risk of damage to the human lumbar functional spinal unit considering age, height, weight and sex using a combination of FEM and RSM. Biomech Model Mechanobiol. 19(1):351–387.
  • Takahashi I, Kikuchi SI, Sato K, Sato N. 2006. Mechanical load of the lumbar spine during forward bending motion of the trunk-a biomechanical study. Spine. 31(1):18–23.
  • Ueno K, Liu YK. 1987. A three-dimensional nonlinear finite element model of lumbar intervertebral joint in torsion. J Biomech Eng. 109(3):200–209.
  • Volkheimer D, Malakoutian M, Oxland TR, Wilke HJ. 2015. Limitations of current in vitro test protocols for investigation of instrumented adjacent segment biomechanics: critical analysis of the literature. Eur Spine J. 24(9):1882–1892.
  • Wang S, Park WM, Gadikota HR, Miao J, Kim YH, Wood KB, Li G. 2013. A combined numerical and experimental technique for estimation of the forces and moments in the lumbar intervertebral disc. Comput Methods Biomech Biomed Eng. 16(12):1278–1286.
  • Wang S, Park WM, Kim YH, Cha T, Wood K, Li G. 2014. In vivo loads in the lumbar L3-4 disc during a weight lifting extension. Clin Biomech (Bristol, Avon)). 29(2):155–160. http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed12&NEWS=N&AN=2014155973.
  • Wang JL, Parnianpour M, Shirazi-Adl A, Engin AE, Li S, Patwardhan A. 1997. Development and validation of a viscoelastic finite element model of an L2/L3 motion segment. Theor Appl Fract Mech. 28(1):81–93.
  • Wilke H-J, Neef P, Hinz B, Seidel H, Claes L. 2001. Intradiscal pressure together with anthropometric data – a data set for the validation of models. Clin Biomech. 16:S111–S126. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0268003300001030.
  • Wilke H-J, Wenger K, Claes L. 1998. Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Euro Spine J. 7:148–154. Available from: http://link.springer.com/10.1007/s005860050045.
  • Yang B, O'Connell GD. 2017. Effect of collagen fibre orientation on intervertebral disc torsion mechanics. Biomech Model Mechanobiol. 16(6):2005–2015.
  • Zander T, Dreischarf M, Schmidt H, Bergmann G, Rohlmann A. 2015. Spinal loads as influenced by external loads: A combined in vivo and in silico investigation. J Biomech. 48(4):578–584.
  • Zander T, Rohlmann A, Bergmann G. 2009. Influence of different artificial disc kinematics on spine biomechanics. Clin Biomech (Bristol, Avon)). 24(2):135–142. http://dx.doi.org/10.1016/j.clinbiomech.2008.11.008.
  • Zhou C, Cha T, Wang W, Guo R, Li G. 2021. Investigation of Alterations in the lumbar disc biomechanics at the adjacent segments after spinal fusion using a combined in vivo and in silico approach. Ann Biomed Eng. 49(2):601–616.
  • Zhou C, Willing R. 2020a. Sensitivities of lumbar segmental kinematics and functional tissue loads in sagittal bending to design parameters of a ball-in-socket total disc arthroplasty prosthesis. Comput Methods Biomech Biomed Eng. 23(9):536–547.
  • Zhou C, Willing R. 2020b. Alterations in the geometry, fiber orientation, and mechanical behavior of the lumbar intervertebral disc by nucleus swelling. J Biomech Eng. 142(8):1–13.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.