145
Views
0
CrossRef citations to date
0
Altmetric
Articles

Platelet adhesion potential estimation in a normal and diseased coronary artery model: effects of shear stress magnitude versus shear stress history

Pages 73-83 | Received 05 Nov 2020, Accepted 15 May 2021, Published online: 26 May 2021

References

  • Bark Jr. DL, Ku DN. 2010. Wall shear over high degree stenoses pertinent to atherothrombosis. J Biomech. 43(15):2970–2977.
  • Chien S. 2008. Effects of disturbed flow on endothelial cells. Ann Biomed Eng. 36(4):554–562.
  • Cunningham KS, Gotlieb AI. 2005. The role of shear stress in the pathogenesis of atherosclerosis. Lab Invest. 85(1):9–23.
  • Dodge Jr. JT, Brown BG, Bolson EL, Dodge HT. 1988. Intrathoracic spatial location of specified coronary segments on the normal human heart. Applications in quantitative arteriography, assessment of regional risk and contraction, and anatomic display. Circulation. 78(5):1167–1180.
  • Dodge Jr. JT, Brown BG, Bolson EL, Dodge HT. 1992. Lumen diameter of normal human coronary arteries. Influence of age, sex, anatomic variation, and left ventricular hypertrophy or dilation. Circulation. 86(1):232–246.
  • Faghih MM, Sharp MK. 2019. Modeling and prediction of flow-induced hemolysis: a review. Biomech Model Mechanobiol. 18(4):845–881.
  • Fuchs B, Budde U, Schulz A, Kessler CM, Fisseau C, Kannicht C. 2010. Flow-based measurements of von Willebrand factor (VWF) function: binding to collagen and platelet adhesion under physiological shear rate. Thromb Res. 125(3):239–245.
  • Ghalichi F, Deng X, De Champlain A, Douville Y, King M, Guidoin R. 1998. Low Reynolds number turbulence modeling of blood flow in arterial stenoses. Biorheology. 35(4-5):281–294.
  • Goubergrits L, Affeld K. 2004. Numerical estimation of blood damage in artificial organs. Artif Organs. 28(5):499–507.
  • Hong D, Jaron D, Buerk DG, Barbee KA. 2006. Heterogeneous response of microvascular endothelial cells to shear stress. Am J Physiol Heart Circ Physiol. 290(6):H2498–H2508.
  • Houston P, Dickson MC, Ludbrook V, White B, Schwachtgen JL, McVey JH, Mackman N, Reese JM, Gorman DG, Campbell C, et al. 1999. Fluid shear stress induction of the tissue factor promoter in vitro and in vivo is mediated by Egr-1. Arterioscler Thromb Vasc Biol. 19(2):281–289.
  • Kamada H, Tsubota K, Nakamura M, Wada S, Ishikawa T, Yamaguchi T. 2011. Computational study on effect of stenosis on primary thrombus formation. Biorheology. 48(2):99–114.
  • LaMack JA, Friedman MH. 2007. Individual and combined effects of shear stress magnitude and spatial gradient on endothelial cell gene expression. Am J Physiol Heart Circ Physiol. 293(5):H2853–H2859.
  • Langer HF, Gawaz M. 2008. Platelet-vessel wall interactions in atherosclerotic disease. Thromb Haemost. 99(3):480–486.
  • Liu Y, Zhao F, Gu W, Yang H, Meng Q, Zhang Y, Yang H, Duan Q. 2009. The roles of platelet GPIIb/IIIa and alphavbeta3 integrins during HeLa cells adhesion, migration, and invasion to monolayer endothelium under static and dynamic shear flow. J Biomed Biotechnol. 2009:829243.
  • Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, de SG, Ferguson TB, Ford E, Furie K, Gillespie C, et al. 2010. Heart disease and stroke statistics–2010 update: a report from the American Heart Association. Circulation. 121(7):e46–e215.
  • Meza D, Abejar L, Rubenstein DA, Yin W. 2016. A Shearing-stretching device that can apply physiological fluid shear stress and cyclic stretch concurrently to endothelial cells. J Biomech Eng. 138(3):4032550.
  • Meza D, Musmacker B, Steadman E, Stransky T, Rubenstein DA, Yin W. 2019. Endothelial cell biomechanical responses are dependent on both fluid shear stress and tensile strain. Cell Mol Bioeng. 12(4):311–325.
  • Meza D, Rubenstein DA, Yin W. 2018. A fluid-structure interaction model of the left coronary artery. J Biomech Eng. 140(12):121006–1–121006–8.
  • Meza D, Shanmugavelayudam SK, Mendoza A, Sanchez C, Rubenstein DA, Yin W. 2017. Platelets modulate endothelial cell response to dynamic shear stress through PECAM-1. Thromb Res. 150:44–50.
  • Nobili M, Sheriff J, Morbiducci U, Redaelli A, Bluestein D. 2008. Platelet activation due to hemodynamic shear stresses: damage accumulation model and comparison to in vitro measurements. Asaio J. 54(1):64–72.
  • Pontiggia L, Steiner B, Ulrichts H, Deckmyn H, Forestier M, Beer JH. 2006. Platelet microparticle formation and thrombin generation under high shear are effectively suppressed by a monoclonal antibody against GPIba. Thromb Haemost. 96(6):774–780.
  • Rubenstein DA, Yin W. 2010. Quantifying the effects of shear stress and shear exposure duration regulation on flow induced platelet activation and aggregation. J Thromb Thrombolysis. 30(1):36–45.
  • Schwenke DC, Carew TE. 1989a. Initiation of atherosclerotic lesions in cholesterol-fed rabbits. I. Focal increases in arterial LDL concentration precede development of fatty streak lesions. Arteriosclerosis. 9(6):895–907.
  • Schwenke DC, Carew TE. 1989b. Initiation of atherosclerotic lesions in cholesterol-fed rabbits. II. Selective retention of LDL vs. selective increases in LDL permeability in susceptible sites of arteries. Arteriosclerosis. 9(6):908–918.
  • Shanmugavelayudam SK, Rubenstein DA, Yin W. 2010. Effect of geometrical assumptions on numerical modeling of coronary blood flow under normal and disease conditions. J Biomech Eng. 132(6):061004.
  • Sheriff J, Bluestein D, Girdhar G, Jesty J. 2010. High-shear stress sensitizes platelets to subsequent low-shear conditions. Ann Biomed Eng. 38(4):1442–1450.
  • Sumi T, Yamashita A, Matsuda S, Goto S, Nishihira K, Furukoji E, Sugimura H, Kawahara H, Imamura T, Kitamura K, et al. 2010. Disturbed blood flow induces erosive injury to smooth muscle cell-rich neointima and promotes thrombus formation in rabbit femoral arteries. J Thromb Haemost. 8(6):1394–1402.
  • Wein M, Sterbinsky SA, Bickel CA, Schleimer RP, Bochner BS. 1995. Comparison of human eosinophil and neutrophil ligands for P-selectin: ligands for P-selectin differ from those for E-selectin. Am J Respir Cell Mol Biol. 12(3):315–319.
  • Yin W, Rouf F, Shanmugavelayudam SK, Rubenstein DA. 2014. Endothelial cells modulate platelet response to dynamic shear stress. Cardiovasc Eng Tech. 5(2):145–153.
  • Yin W, Shanmugavelayudam SK, Rubenstein DA. 2009. 3D numerical simulation of coronary blood flow and its effect on endothelial cell activation. Conf Proc IEEE Eng Med Biol Soc. 2009:4003–4006.
  • Yin W, Shanmugavelayudam SK, Rubenstein DA. 2011. The effect of physiologically relevant dynamic shear stress on platelet and endothelial cell activation. Thromb Res. 127(3):235–241.
  • Zhou Z, Bernardo A, Zhu Q, Guan Y, Sun W, Lopez JA, Jing N, Dong JF. 2009. A G-quartet oligonucleotide blocks glycoprotein Ib-mediated platelet adhesion and aggregation under flow conditions. Thromb Haemost. 102(3):529–537.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.