286
Views
0
CrossRef citations to date
0
Altmetric
Articles

Quantification of the effects of robotic-assisted gait training on upper and lower body strategy during gait in diplegic children with Cerebral Palsy using summary parameters

, ORCID Icon, , , , ORCID Icon & show all
Pages 140-147 | Received 16 Feb 2021, Accepted 31 May 2021, Published online: 14 Jun 2021

References

  • Abbasi L, Rojhani-Shirazi Z, Razeghi M, Raeisi Shahraki H. 2018. Trunk kinematic analysis during gait in cerebral palsy children with crouch gait pattern. J Biomed Phys Eng. 8(3):281–288.
  • Amirmudin NA, Lavelle G, Theologis T, Thompson N, Ryan JM. 2019. Multilevel surgery for children with cerebral palsy: a meta-analysis. Pediatrics. 143(4):e20183390..
  • Baker R, McGinley JL, Schwartz MH, Beynon S, Rozumalski A, Graham HK, Tirosh O. 2009. The gait profile score and movement analysis profile. Gait Posture. 30(3):265–269.
  • Banala SK, Kim SH, Agrawal SK, Scholz JP. 2009. Robot assisted gait training with active leg exoskeleton (ALEX). IEEE Trans Neural Syst Rehabil Eng. 17(1):2–8.
  • Bax M, Goldstein M, Rosenbaum P, Leviton A, Paneth N, Dan B, Jacobsson B, Damiano D, Executive Committee for the Definition of Cerebral Palsy 2005. Executive Committee for the Definition of Cerebral Palsy. 2005. Proposed definition and classification of cerebral palsy. Dev Med Child Neurol. 47(8):571–576.
  • Belda-Lois J-M, Mena-del Horno S, Bermejo-Bosch I, Moreno JC, Pons JL, Farina D, Iosa M, Molinari M, Tamburella F, Ramos A, et al. 2011. Rehabilitation of gait after stroke: a review towards a top-down approach. J NeuroEngineering Rehabil. 8(1):66.
  • Booth ATC, Buizer AI, Meyns P, Oude Lansink ILB, Steenbrink F, van der Krogt MM. 2018. The efficacy of functional gait training in children and young adults with cerebral palsy: a systematic review and meta-analysis. Dev Med Child Neurol. 60(9):866–883.
  • Borggraefe I, Schaefer JS, Klaiber M, Dabrowski E, Ammann-Reiffer C, Knecht B, Berweck S, Heinen F, Meyer-Heim A. 2010. Robotic-assisted treadmill therapy improves walking and standing performance in children and adolescents with cerebral palsy. Eur J Paediatr Neurol. 14(6):496–502.
  • Boyer ER, Stout JL, Laine JC, Gutknecht SM, Araujo de Oliveira LH, Munger ME, Schwartz MH, Novacheck TF. 2018. Long-term outcomes of distal femoral extension osteotomy and patellar tendon advancement in individuals with cerebral palsy. J Bone Joint Surg Am. 100(1):31–41.
  • Bruni MF, Melegari C, De Cola MC, Bramanti A, Bramanti P, Calabrò RS. 2018. What does best evidence tell us about robotic gait rehabilitation in stroke patients: A systematic review and meta-analysis. J Clin Neurosci. 48:11–17.
  • Buchholz AC, McGillivray CF, Pencharz PB. 2003. Physical activity levels are low in free-living adults with chronic paraplegia. Obes Res. 11(4):563–570.
  • Carpino G, Pezzola A, Urbano M, Guglielmelli E. 2018. 2018. Assessing effectiveness and costs in robot-mediated lower limbs rehabilitation: a meta-analysis and state of the art. J Healthc Eng. 2018:7492024.
  • Cherni Y, Ballaz L, Lemaire J, Dal Maso F, Begon M. 2020. Effect of low dose robotic-gait training on walking capacity in children and adolescents with cerebral palsy. Neurophysiol Clin. 50(6):507–519.
  • Cimolin V, Condoluci C, Manzia CM, Girolamo G. d, Galli M. 2020. Quantification of upper body strategy during gait in children with spastic diplegia using a summary parameter. Comput Methods Biomech Biomed Engin. 23(15):1260–1266.
  • Cimolin V, Galli M. 2014. Summary measures for clinical gait analysis: A literature review. Gait Posture. 39(4):1005–1010.
  • Cimolin V, Galli M, Vimercati SL, Albertini G. 2011. Use of the Gait Deviation Index for the assessment of gastrocnemius fascia lengthening in children with Cerebral Palsy. Research in Developmental Disabilities. 32(1):377–381.
  • Colombo G, Wirz M, Dietz V. 2001. Driven gait orthosis for improvement of locomotor training in paraplegic patients. Spinal Cord. 39(5):252–255.
  • Davis RB, Ounpuu S, Tyburski D, Gage JR. 1991. A gait analysis data collection and reduction technique. Human Movement Sci. 10(5):575–597.
  • Degelean M, De Borre L, Salvia P, Pelc K, Kerckhofs E, De Meirleir L, Cheron G, Dan B. 2012. Effect of ankle-foot orthoses on trunk sway and lower limb intersegmental coordination in children with bilateral cerebral palsy. J Pediatr Rehabil Med. 5(3):171–179.
  • Drużbicki M, Rusek W, Snela S, Dudek J, Szczepanik M, Zak E, Durmala J, Czernuszenko A, Bonikowski M, Sobota G. 2013. Functional effects of robotic-assisted locomotor treadmill therapy in children with cerebral palsy. J Rehabil Med. 45(4):358–363.
  • Drużbicki M, Rusek W, Szczepanik M, Dudek J, Snela S. 2010. Assessment of the impact of orthotic gait training on balance in children with cerebral palsy. Acta Bioeng Biomech. 12(3):53–58.
  • Esquenazi A, Talaty M, Packel A, Saulino M. 2012. The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. Am J Phys Med Rehabil. 91(11):911–921.
  • Ferreira LAB, Cimolin V, Costici PF, Albertini G, Oliveira CS, Galli M. 2014. Effects of gastrocnemius fascia lengthening on gait pattern in children with cerebral palsy using the Gait Profile Score. Research in Developmental Disabilities. 35(5):1137–1143.
  • Galli M, Cimolin V, Albertini G, Piccinini L, Turconi AC, Romkes J, Brunner R. 2014. Kinematic analysis of upper limb during walking in diplegic children with Cerebral Palsy. Eur J Paediatr Neurol. 18(2):134–139.
  • Galli M, Cimolin V, Rigoldi C, Albertini G. 2016. Quantitative evaluation of the effects of ankle foot orthosis on gait in children with cerebral palsy using the gait profile score and gait variable scores. J Dev Phys Disabil. 28(3):367–379.
  • Gassert R, Dietz V. 2018. Rehabilitation robots for the treatment of sensorimotor deficits: a neurophysiological perspective. J Neuroeng Rehabil. 15(1):46
  • Hartigan C, Kandilakis C, Dalley S, Clausen M, Wilson E, Morrison S, Etheridge S, Farris R. 2015. Mobility outcomes following five training sessions with a powered exoskeleton. Top Spinal Cord Inj Rehabil. 21(2):93–99.
  • Hesse S, Uhlenbrock D. 2000. A mechanized gait trainer for restoration of gait. J Rehabil Res Dev. 37(6):701–708.
  • Koenig A, Wellner M, Köneke S, Meyer-Heim A, Lünenburger L, Riener R. 2008. Virtual gait training for children with cerebral palsy using the Lokomat gait orthosis. Stud Health Technol Inform. 132:204–209.
  • Luft AR, Macko RF, Forrester LW, Villagra F, Ivey F, Sorkin JD, Whitall J, McCombe-Waller S, Katzel L, Goldberg AP, et al. 2008. Treadmill exercise activates subcortical neural networks and improves walking after stroke: a randomized controlled trial. Stroke. 39(12):3341–3350.
  • Mehrholz J, Harvey LA, Thomas S, Elsner B. 2017. Is body-weight-supported treadmill training or robotic-assisted gait training superior to overground gait training and other forms of physiotherapy in people with spinal cord injury? A systematic review. Spinal Cord. 55(8):722–729.
  • Meyer-Heim A, Borggraefe I, Ammann-Reiffer C, Berweck S, Sennhauser FH, Colombo G, Knecht B, Heinen F. 2007. Feasibility of robotic-assisted locomotor training in children with central gait impairment. Dev Med Child Neurol. 49(12):900–906.
  • Moreau NG, Bodkin AW, Bjornson K, Hobbs A, Soileau M, Lahasky K. 2016. Effectiveness of rehabilitation interventions to improve gait speed in children with cerebral palsy: systematic review and meta-analysis. Phys Ther. 96(12):1938–1954.
  • Novak I, McIntyre S, Morgan C, Campbell L, Dark L, Morton N, Stumbles E, Wilson S-A, Goldsmith S. 2013. A systematic review of interventions for children with cerebral palsy: state of the evidence. Dev Med Child Neurol. 55(10):885–910.
  • Putz C, Döderlein L, Mertens EM, Wolf SI, Gantz S, Braatz F, Dreher T. 2016. Multilevel surgery in adults with cerebral palsy. Bone Joint J. 98-B(2):282–288.
  • Rodríguez-Fernández A, Lobo-Prat J, Font-Llagunes JM. 2021. Systematic review on wearable lower-limb exoskeletons for gait training in neuromuscular impairments. J Neuroeng Rehabil. 18(1):22
  • Romei M, Galli M, Motta F, Schwartz M, Crivellini M. 2004. Use of the normalcy index for the evaluation of gait pathology. Gait Posture. 19(1):85–90.
  • Sale P, De Pandis MF, Le Pera D, Sova I, Cimolin V, Ancillao A, Albertini G, Galli M, Stocchi F, Franceschini M. 2013. Robot-assisted walking training for individuals with Parkinson’s disease: a pilot randomized controlled trial. BMC Neurol. 13(1):50.
  • Schmidt H, Werner C, Bernhardt R, Hesse S, Krüger J. 2007. Gait rehabilitation machines based on programmable footplates. J Neuroeng Rehabil. 4(2):2
  • Schwarze M, Block J, Kunz T, Alimusaj M, Heitzmann DWW, Putz C, Dreher T, Wolf SI. 2019. The added value of orthotic management in the context of multi-level surgery in children with cerebral palsy. Gait Posture. 68:525–530.
  • Smania N, Bonetti P, Gandolfi M, Cosentino A, Waldner A, Hesse S, Werner C, Bisoffi G, Geroin C, Munari D. 2011. Improved gait after repetitive locomotor training in children with cerebral palsy. Am J Phys Med Rehabil. 90(2):137–149.
  • Strickland E. 2012. Good-bye, wheelchair. IEEE Spectr. 49(1):30–32.
  • Swinnen E, Goten LV, De Koster B, Degelaen M. 2016. Thorax and pelvis kinematics during walking, a comparison between children with and without cerebral palsy: A systematic review. NRE. 38(2):129–146.
  • van Hedel HJA, Meyer-Heim A, Rüsch-Bohtz C. 2016. Robot-assisted gait training might be beneficial for more severely affected children with cerebral palsy. Dev Neurorehabil. 19(6):410–415.
  • Veneman JF, Kruidhof R, Hekman EEG, Ekkelenkamp R, Van Asseldonk EHF, van der Kooij H. 2007. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 15(3):379–386.
  • Wallard L, Dietrich G, Kerlirzin Y, Bredin J. 2017. Robotic-assisted gait training improves walking abilities in diplegic children with cerebral palsy. Eur J Paediatr Neurol. 21(3):557–564.
  • Winchester P, McColl R, Querry R, Foreman N, Mosby J, Tansey K, Williamson J. 2005. Changes in supraspinal activation patterns following robotic locomotor therapy in motor-incomplete spinal cord injury. Neurorehabil Neural Repair. 19(4):313–324.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.