237
Views
0
CrossRef citations to date
0
Altmetric
Articles

A comprehensive finite element model for studying Cochlear-Vestibular interaction

, , , &
Pages 204-214 | Received 25 Feb 2021, Accepted 18 Jun 2021, Published online: 12 Oct 2021

References

  • Baumgartner D, Charpiot A, Lamy M, Vuong-Chaney H. 2018. Development of a finite element model of ahuman lateral semicircular canal of the inner ear. S2-6. Athens, Greece: InternationalResearch Council on Biomechanics of Injury.
  • Black FO. 1977. Present vestibular status of subjects implanted with auditory prostheses. Ann Otol Rhinol Laryngol Suppl. 86(3 Pt 3 Suppl 38):49–56.
  • Bohnke F, Arnold W. 1999. 3D-finite element model of the human cochlea including fluid-structure couplings. ORL J Otorhinolaryngol Relat Spec. 61(5):305–310.
  • Bohnke F, Arnold W. 2006. Bone conduction in a three-dimensional model of the cochlea. ORL J Otorhinolaryngol Relat Spec. 68(6):393–396.
  • Bronzino J., editor. 2000. The biomedical engineering handbook. Vol. 1. Boca Raton (FL): CRC Press LLC.
  • Browning GC, Granich MS. 1978. Surgical anatomy of the temporal bone in the chinchilla. Ann Otol Rhinol Laryngol. 87(6 Pt 1):875–882.
  • Carey JP, Hirvonen TP, Hullar TE, Minor LB. 2004. Acoustic responses of vestibular afferents in a model of superior canal dehiscence. Otol Neurotol. 25(3):345–352.
  • De Paolis A, Watanabe H, Nelson JT, Bikson M, Packer M, Cardoso L. 2017. Human cochlear hydrodynamics: a high-resolution μCT-based finite element study. J Biomech. 50:209–216.
  • Ding CR, Xu XD, Wang XW, Jia XH, Cheng X, Liu X, Yang L, Tong BS, Chi FL, Ren DD. 2016. Effect of endolymphatic hydrops on sound transmission in live Guinea pigs measured with a laser Doppler vibrometer. Neural Plast. 2016:8648297.
  • Edom E, Obrist D, Henniger R, Kleiser L, Sim JH, Huber AM. 2013. The effect of rocking stapes motions on the cochlear fluid flow and on the basilar membrane motion. J Acoust Soc Am. 134(5):3749–3758.
  • Elliott SJ, Ni G. 2018. An elemental approach to modelling the mechanics of the cochlea. Hear Res. 360:14–24.
  • Emadi G, Richter CP, Dallos P. 2004. Stiffness of the gerbil basilar membrane: radial and longitudinal variations. J Neurophysiol. 91(1):474–488.
  • Forbes PA, Siegmund GP, Schouten AC, Blouin JS. 2014. Task, muscle and frequency dependent vestibular control of posture. Front Integr Neurosci. 8:94.
  • Gan RZ, Reeves BP, Wang X. 2007. Modeling of sound transmission from ear canal to cochlea. Ann Biomed Eng. 35(12):2180–2195.
  • Gan RZ, Zhang X, Guan X. 2011. Modeling analysis of biomechanical changes of middle ear and cochlea in otitis media. AIP Conference Proceedings-American Institute of Physics.
  • Goyens J, Pourquie M, Poelma C, Westerweel J. 2019. Asymmetric cupula displacement due to endolymph vortex in the human semicircular canal. Biomech Model Mechanobiol. 18(6):1577–1590.
  • Grant JW, Huang CC, Cotton, JR. 1994. Theoretical mechanical frequency response of the otolithorgans. J Vestib Res. 4:137–151.
  • Grant JW, Van Buskirk WC. 1976. Experimental measurement of the stiffness of the cupula. Biophys J. 16(6):669–678.
  • Greene NT, Jenkins HA, Tollin DJ, Easter JR. 2017. Stapes displacement and intracochlear pressure in response to very high level, low frequency sounds. Hear Res. 348:16–30.
  • Greenwood DD. 1990. A cochlear frequency-position function for several species-29 years later. J Acoust Soc Am. 87(6):2592–2605.
  • Hanamure Y, Lim DJ. 1987. Anatomy of the chinchilla bulla and eustachian tube: I. Gross and microscopic study. Am J Otolaryngol. 8(3):127–143.
  • Hayden R, Sawyer S, Frey E, Mori S, Migliaccio AA, Della Santina CC. 2011. Virtual labyrinth model of vestibular afferent excitation via implanted electrodes: validation and application to design of a multichannel vestibular prosthesis. Exp Brain Res. 210(3–4):623–640.
  • Hedjoudje A, Hayden R, Dai C, Ahn J, Rahman M, Risi F, Zhang J, Mori S, Della Santina CC. 2019. Virtual rhesus labyrinth model predicts responses to electrical stimulation delivered by a vestibular prosthesis. J Assoc Res Otolaryngol. 20(4):313–339.
  • Hullar TE, Williams CD. 2006. Geometry of the semicircular canals of the chinchilla (Chinchilla laniger). Hear Res. 213(1–2):17–24.
  • Iversen MM, Rabbitt RD. 2017. Wave mechanics of the vestibular semicircular canals. Biophys J. 113(5):1133–1149.
  • Iversen MM, Zhu H, Zhou W, Della Santina CC, Carey JP, Rabbitt RD. 2018. Sound abnormally stimulates the vestibular system in canal dehiscence syndrome by generating pathological fluid-mechanical waves. Sci Rep. 8(1):10257.
  • Janky KL, Thomas MLA, High RR, Schmid KK, Ogun OA. 2018. Predictive factors for vestibular loss in children with hearing loss. Am J Audiol. 27(1):137–146.
  • Karimi P, Changizi S, Shaygan S, Kazemi MM, Barati S, Fatouraee N. 2017. Hydrodynamic analysis of endolymph in semicircular canals in a transversal head rotation using finite element method. 24th national and 2nd International Iranian Conference on Biomedical Engineering; Amirkabir University of, Tehran, Iran.
  • Kassemi M, Oas JG, Deserranno D. 2005. Fluid-structural dynamics of ground-based and microgravity caloric tests. J Vestib Res. 15(2):93–107.
  • Kim N, Homma K, Puria S. 2011. Inertial bone conduction: symmetric and anti-symmetric components. J Assoc Res Otolaryngol. 12(3):261–279.
  • Kim N, Steele CR, Puria S. 2013. Superior-semicircular-canal dehiscence: effects of location, shape, and size on sound conduction. Hear Res. 301:72–84.
  • MacNeilage PR, Glasauer S. 2017. Quantification of head movement predictability and implications for suppression of vestibular input during locomotion. Front Comput Neurosci. 11:47.
  • Migliaccio AA, Macdougall HG, Minor LB, Della Santina CC. 2005. Inexpensive system for real-time 3-dimensional video-oculography using a fluorescent marker array. J Neurosci Methods. 143(2):141–150.
  • Miwa T, Minoda R, Matsuyoshi H, Takeda H. 2019. The effect of cochlear implants on vestibular-evoked myogenic potential responses and postural stability. Auris Nasus Larynx. 46(1):50–57.
  • Muller M, Hoidis S, Smolders JW. 2010. A physiological frequency-position map of the chinchilla cochlea. Hear Res. 268(1–2):184–193.
  • Naidu RC, Mountain DC. 2000. Longitudinal coupling within the basilar membrane, recticular liminae. In: Wada H, Takasaka T, Ikeda K., editors. Recent developments in auditory mechanics. Teaneck: World Scientific. p. 123–129.
  • Pfaff C, Schultz JA, Schellhorn R. 2019. The vertebrate middle and inner ear: a short overview. J Morphol. 280(8):1098–1105.
  • Rabbitt RD, Breneman KD, King C, Yamauchi AM, Boyle R, Highstein SM. 2009. Dynamic displacement of normal and detached semicircular canal cupula. J Assoc Res Otolaryngol. 10(4):497–509.
  • Rask-Andersen H,Erixon E,Kinnefors A,Löwenheim H,Schrott-Fischer A,Liu W. 2011. Anatomy of the human cochlea – implications for cochlear implantation. Cochlear Implants International. 12(sup1):S13–SS8. doi:https://doi.org/10.1179/146701011X13001035752174.
  • Ravicz ME, Rosowski JJ. 2013. Middle-ear velocity transfer function, cochlear input immittance, and middle-ear efficiency in chinchilla. J Acoust Soc Am. 134(4):2852–2865.
  • Ren T. 2002. Longitudinal pattern of basilar membrane vibration in the sensitive cochlea. Proc Natl Acad Sci U S A. 99(26):17101–17106.
  • Ren T, Nuttall AL. 2001. Basilar membrane vibration in the basal turn of the sensitive gerbil cochlea. Hear Res. 151(1–2):48–60.
  • Rosowski JJ, Ravicz ME, Songer JE. 2006. Structures that contribute to middle-ear admittance in chinchilla. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 192(12):1287–1311.
  • Ruggero MA, Rich NC, Robles L, Shivapuja BG. 1990. Middle-ear response in the chinchilla and its relationship to mechanics at the base of the cochlea. J Acoust Soc Am. 87(4):1612–1629.
  • Santos CF, Belinha J, Gentil F, Parente M, Jorge RN. 2017. An alternative 3D numerical method to study the biomechanical behaviour of the human inner ear semicircular canal. Acta Bioeng Biomech. 19(1):3–15.
  • Schier P, Handler M, Johnson Chacko L, Schrott-Fischer A, Fritscher K, Saba R, Baumgartner C, Baumgarten D. 2018. Model-based vestibular afferent stimulation: evaluating selective electrode locations and stimulation waveform shapes. Front Neurosci. 12:588.
  • Selva P, Oman CM, Stone HA. 2009. Mechanical properties and motion of the cupula of the human semicircular canal. J Vestib Res. 19(3–4):95–110.
  • Selva P, Joseph M, Yves G. 2010. Toward a three-dimensional finite-element model of the human inner ear angular accelerometers sensors. Int J Comput Vis Biomech Model Mechanobiol. 3(2):149–156.
  • Shen S, Liu Y, Sun X, Zhao W, Su Y, Yu S, Liu W. 2013. A biomechanical model of the inner ear: numerical simulation of the caloric test. ScientificWorld J. 2013:160205.
  • Stenfelt S, Puria S, Hato N, Goode RL. 2003. Basilar membrane and osseous spiral lamina motion in human cadavers with air and bone conduction stimuli. Hear Res. 181(1–2):131–143.
  • Swan J. 2018. HIstology images for the senses. http://www.webanatomy.net/histology/neural/senses_index.htm.
  • Teudt I, McCusker S, Richter CP. 2007. Basilar membrane and tectorial membrane stiffness in CBA/Caj mice. 497. Association for Research in Otolaryngology.
  • von Békésy G. 1960. Experiments in hearing. Oxford: Mcgraw Hill.
  • Vrettakos PA, Dear SP, Saunders JC. 1988. Middle ear structure in the chinchilla: a quantitative study. Am J Otolaryngol. 9(2):58–67.
  • Wang D, Bienen B, Nazem M, Tian YH, Zheng JB, Pucker T, Randolph MF. 2015. Large deformation finite element analyses in geotechnical engineering. Comput Geotech. 65:104–114.
  • Wang X, Gan RZ. 2016. 3D finite element model of the chinchilla ear for characterizing middle ear functions. Biomech Model Mechanobiol. 15(5):1263–1277.
  • Wang X, Nakmali D, Gan RZ. 2015. Complex modulus of round window membrane over auditory frequencies in normal and otitis media chinchilla ears. IJECB. 3(1):27–44.
  • Wang X, Wang L, Zhou J, Hu Y. 2014. Finite element modelling of human auditory periphery including a feed-forward amplification of the cochlea. Comput Methods Biomech Biomed Engin. 17(10):1096–1107.
  • Wittbrodt MJ, Steele CR, Puria S. 2006. Developing a physical model of the human cochlea using micro-fabrication methods. Audiol Neurootol. 11(2):104–112.
  • Yu S, Wang JZ, Guo Y, Sun XZ, Shen S. 2018. A numerical investigation of the effects of benign paroxysmal positional vertigo on the balance function of the inner ear. CMES. 116(2):315–322.
  • Zdravkovic N, Milosevic Z, Saveljic I, Nikolic D, Miloradovic V, Filipovic N. 2017. Three-dimensional biomechanical model of benign paroxysmal positional vertigo in the semi-circular canal. Teh Vjesn. 24(6):1769–1775.
  • Zhang XM, Gan RZ. 2011. A comprehensive model of human ear for analysis of implantable hearing devices. IEEE Trans Biomed Eng. 58(10):3024–3027.
  • Zhang J, Tian J, Ta N, Rao Z. 2018. Transient response of the human ear to impulsive stimuli: a finite element analysis. J Acoust Soc Am. 143(5):2768.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.