793
Views
5
CrossRef citations to date
0
Altmetric
Articles

Finite element study on the influence of pore size and structure on stress shielding effect of additive manufactured spinal cage

, &
Pages 566-577 | Received 02 Mar 2021, Accepted 16 Aug 2021, Published online: 23 Sep 2021

References

  • Alvarez K, Nakajima H. 2009. Metallic scaffolds for bone regeneration. Materials. 2(3):790–832.
  • Ambati DV, Wright EK, Jr, Lehman RA, Jr, Kang DG, Wagner SC, Dmitriev AE. 2015. Bilateral pedicle screw fixation provides superior biomechanical stability in transforaminal lumbar interbody fusion: a finite element study. Spine J. 15(8):1812–1822.
  • ASTM F2077: Testing intervertebral body fusion devices. 2020. [accessed 2020 Sep 9]. https://www.element.com/nucleus/2019/11/21/19/25/astm-f2077-testing-ibfds#:∼:text=ASTM%20F2077%20is%20the%20standard,properties%20of%20intervertebral%20spinal%20implants.
  • Barth E, Ronningen H, Solheim LF, Saethren B. 1986. Bone ingrowth into weight-bearing porous fiber titanium implants. Mechanical and biochemical correlations. J Orthop Res. 4(3):356–361.
  • Bobyn JD, Pilliar RM, Cameron HU, Weatherly GC. 1980. The optimum pore size for the fixation of porous-surfaced metal implants by the ingrowth of bone. Clin Orthopaed Relat Res. 150:263–270.
  • Bobyn JD, Stackpool GJ, Hacking SA, Tanzer M, Krygier JJ. 1999. Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial. J Bone Joint Surg Br Vol. 81-B(5):907–914.
  • Bonfield W, Wang M, Tanner K. 1998. Interfaces in analogue biomaterials. Acta Mater. 46(7):2509–2518.
  • Chen J-H, Liu C, You L, Simmons CA. 2010. Boning up on Wolff's Law: mechanical regulation of the cells that make and maintain bone. J Biomech. 43(1):108–118.
  • Choi J, Shin D-A, Kim S. 2017. Biomechanical effects of the geometry of ball-and-socket artificial disc on lumbar spine: a finite element study. Spine (Phila Pa 1976). 42(6):E332–E339.
  • Choi K-C, Ryu K-S, Lee S-H, Kim YH, Lee SJ, Park C-K. 2013. Biomechanical comparison of anterior lumbar interbody fusion: stand-alone interbody cage versus interbody cage with pedicle screw fixation - a finite element analysis. BMC Musculoskelet Disord. 14(1):220–229.
  • Chosa E, Goto K, Totoribe K, Tajima N. 2004. Analysis of the effect of lumbar spine fusion on the superior adjacent intervertebral disk in the presence of disk degeneration, using the three-dimensional finite element method. Clin Spine Surg. 17(2):134–139.
  • Chuah HG, Rahim IA, Yusof MI. 2010. Topology optimisation of spinal interbody cage for reducing stress shielding effect. Comput Methods Biomech Biomed Eng. 13(3):319–326.
  • Clemow AJT, Weinstein AM, Klawitter JJ, Koeneman J, Anderson J. 1981. Interface mechanics of porous titanium implants. J Biomed Mater Res. 15(1):73–82.
  • Cook SD, Walsh KA, Haddad RJ. 1985. Interface mechanics and bone-growth into porous Co-Cr-Mo alloy implants. Clin Orthopaed Relat Res. 193:271–280.
  • Epasto G, Distefano F, Mineo R, Guglielmino E. 2019. Subject-specific finite element analysis of a lumbar cage produced by electron beam melting. Med Biol Eng Comput. 57(12):2771–2781.
  • fe-safe 2019 FATIGUE THEORY REFERENCE: Dassault Systemes. pp. 123–176. [Online]. Available: https://help.3ds.com/2019/English/DSSIMULIA_Established/FesafeFatigueTheoryPdf/FesafeFatigueTheory.pdf. [Accessed 2020 Feb 26].
  • Frosch K-H, Barvencik F, Viereck V, Lohmann CH, Dresing K, Breme J, Brunner E, Stürmer KM. 2004. Growth behavior, matrix production, and gene expression of human osteoblasts in defined cylindrical titanium channels. J Biomed Mater Res. 68A(2):325–334.
  • Goel V, Monroe B, Gilbertson L, Brinckmann P. 1995. Interlaminar shear stresses and laminae separation in a disc: finite element analysis of the L3-L4 motion segment subjected to axial compressive loads. Spine. 20(6):689–698.
  • Grauer JN, Biyani A, Faizan A, Kiapour A, Sairyo K, Ivanov A, Ebraheim NA, Patel TC, Goel VK. 2006. Biomechanics of two-level Charité artificial disc placement in comparison to fusion plus single-level disc placement combination. Spine J. 6(6):659–666.
  • Guidance for Industry and FDA Staff Spinal System 510(k)s. 2020. [accessed 2020 Sep 9]. https://www.fda.gov/media/71604/download.
  • Haibo H, Huiqun L, Jieen Danqing W, Shang F, Wuling S. 2012. Research progress of biomedical porous titanium and its alloys. Mater Rev. 26(19):262–270.
  • Herrera A, Yánez A, Martel O, Afonso H, Monopoli D. 2014. Computational study and experimental validation of porous structures fabricated by electron beam melting: a challenge to avoid stress shielding. Mater Sci Eng C Mater Biol Appl. 45:89–93.
  • Hofmann AA, Bloebaum RD, Bachus KN. 1997. Progression of human bone ingrowth into porous-coated implants. Rate of bone ingrowth in humans. Acta Orthop Scand. 68(2):161–166. 1997/01/01
  • Huiskes R, Weinans H, Van Rietbergen B. 1992. The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clin Orthopaed Relat Res. 274:124–134.
  • Itälä AI, Ylänen HO, Ekholm C, Karlsson KH, Aro HT. 2001. Pore diameter of more than 100 microm is not requisite for bone ingrowth in rabbits. J Biomed Mater Res. 58(6):679–683.
  • Junchao L, Yanyan Z, Wei W. 2016. Elastic modulus and stress analysis of porous titanium parts fabricated by selective laser melting. J Harbin Inst Technol. 23:46–50.
  • Kanayama M, Cunningham BW, Haggerty CJ, Abumi K, Kaneda K, McAfee PC. 2000. In vitro biomechanical investigation of the stability and stress-shielding effect of lumbar interbody fusion devices. J Neurosurg. 93(2 Suppl):259–265.
  • Kim H-J, Kang K-T, Chang B-S, Lee C-K, Kim J-W, Yeom JS. 2014. Biomechanical analysis of fusion segment rigidity upon stress at both the fusion and adjacent segments: a comparison between unilateral and bilateral pedicle screw fixation. Yonsei Med J. 55(5):1386–1394.
  • Kim K-T, Lee S-H, Suk K-S, Lee J-H, Jeong B-O. 2010. Biomechanical changes of the lumbar segment after total disc replacement: charite(r), prodisc(r) and maverick(r) using finite element model study. J Korean Neurosurg Soc. 47(6):446–453.
  • Kurutz M. 2010. Finite element modelling of human lumbar spine. Finite Element Analysis 209–236. https://www.intechopen.com/chapters/11994.
  • Lee Y-H, Chung C-J, Wang C-W, Peng Y-T, Chang C-H, Chen C-H, Chen Y-N, Li C-T. 2016. Computational comparison of three posterior lumbar interbody fusion techniques by using porous titanium interbody cages with 50% porosity. Comput Biol Med. 71:35–45..
  • Li P, Jiang W, Yan J, Hu K, Han Z, Wang B, Zhao Y, Cui G, Wang Z, Mao K, et al. 2019. A novel 3D printed cage with microporous structure and in vivo fusion function. J Biomed Mater Res A. 107(7):1386–1392.
  • Melikyan ML, Itin VI. 2002. Dynamics of bone tissue mineralization in porous titanium and the mechanical properties of a titanium-bone tissue composite. Tech Phys Lett. 28(8):673–674.
  • Morrow J. 1968. Fatigue properties of metals. In: Richard C. Rice (Ed.), Fatigue design handbook; p. 21–30. USA: Society of Automotive Engineers.
  • Pannell WC, Savin DD, Scott TP, Wang JC, Daubs MDJTSJ. 2015. Trends in the surgical treatment of lumbar spine disease in the United States. 15(8):1719–1727.
  • Ramakrishna S, Mayer J, Wintermantel E, Leong KW. 2001. Biomedical applications of polymer-composite materials: a review. Compos Sci Technol. 61(9):1189–1224.
  • Shirazi-Adl A, Ahmed AM, Shrivastava SC. 1986. Mechanical response of a lumbar motion segment in axial torque alone and combined with compression, (in Eng). Spine (Phila Pa 1976). 11(9):914–927.
  • Stock JT. 2018. Wolff's law (bone functional adaptation). In: Wenda Trevathan, Matt Cartmill, Darna L. Dufour, Clark Spencer Larsen, Dennis H. O'Rourke, Karen Rosenberg, Karen B. Strier (Eds.), The international encyclopedia of biological anthropology. p. 1–2. USA: Wiley Online Library.
  • Taniguchi N, Fujibayashi S, Takemoto M, Sasaki K, Otsuki B, Nakamura T, Matsushita T, Kokubo T, Matsuda S. 2016. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: an in vivo experiment. Mater Sci Eng C Mater Biol Appl. 59:690–701.
  • Tsuruga E, Takita H, Itoh H, Wakisaka Y, Kuboki Y. 1997. Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis. J Biochem. 121(2):317–324.
  • Vadapalli S, Sairyo K, Goel VK, Robon M, Biyani A, Khandha A, Ebraheim NA. 2006. Biomechanical rationale for using polyetheretherketone (PEEK) spacers for lumbar interbody fusion-a finite element study. Spine (Phila Pa 1976). 31(26):E992–E998.
  • Wu S-H, Li Y, Zhang Y-Q, Li X-K, Yuan C-F, Hao Y-L, Zhang Z-Y, Guo Z. 2013. Porous titanium-6 aluminum-4 vanadium cage has better osseointegration and less micromotion than a poly-ether-ether-ketone cage in sheep vertebral fusion. Artif Organs. 37(12):E191–E201. [24147953]
  • Xiao Z, Wang L, Gong H, Zhu D. 2012. Biomechanical evaluation of three surgical scenarios of posterior lumbar interbody fusion by finite element analysis. Biomed Eng Online. 11(1):31.
  • Yan C, Hao L, Hussein A, Young P. 2015. Ti-6Al-4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting. J Mech Behav Biomed Mater. 51:61–73.
  • Zhang QH, Zhou YL, Petit D, Teo EC. 2009. Evaluation of load transfer characteristics of a dynamic stabilization device on disc loading under compression. Med Eng Phys. 31(5):533–538.
  • Zhang Z, Li H, Fogel GR, Liao Z, Li Y, Liu W. 2018. Biomechanical analysis of porous additive manufactured cages for lateral lumbar interbody fusion: a finite element analysis. World Neurosurg. 111:e581–e591.
  • Zhang Z, Sun Y, Sun X, Li Y, Liao Z, Liu W. 2016. Recent advances in finite element applications in artificial lumbar disc replacement. JBiSE. 09(10):1–8.
  • Zhong Z-C, Wei S-H, Wang J-P, Feng C-K, Chen C-S, Yu C-h. 2006. Finite element analysis of the lumbar spine with a new cage using a topology optimization method. Med Eng Phys. 28(1):90–98.
  • Zhu H, Zhong W, Zhang P, Liu X, Huang J, Liu F, Li J. 2020. Biomechanical evaluation of autologous bone-cage in posterior lumbar interbody fusion: a finite element analysis. BMC Musculoskelet Disord. 21(1):379.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.