267
Views
1
CrossRef citations to date
0
Altmetric
Article

Hemodynamics of anterior circulation intracranial aneurysms with daughter blebs: investigating the multidirectionality of blood flow fields

, , , , &
Pages 113-125 | Received 12 Oct 2021, Accepted 27 Feb 2022, Published online: 17 Mar 2022

References

  • Andreas R, Jürgen B, Stefan R, Joachim B, Volker S. 2006. Three-dimensional rotational angiography guidance for aneurysm surgery. J Neurosurg JNS. 105(3):406–411. URL https://thejns.org/view/journals/j-neurosurg/105/3/article-p406.xml.
  • Backes D, Vergouwen Mervyn DI, Velthuis Birgitta K, van der Schaaf Irene C, Bor ASE, Algra A, Rinkel Gabriel JE. 2014. Difference in aneurysm characteristics between ruptured and unruptured aneurysms in patients with multiple intracranial aneurysms. Stroke. 45(5):1299–1303.
  • Bovendeerd PHM, Steenhoven AAV, Vosse FNVD, Vossers G. 1987. Steady entry flow in a curved pipe. J Fluid Mech. 177:233–246. 
  • Brinjikji W, Zhu YQ, Lanzino G, Cloft HJ, Murad MH, Wang Z, Kallmes DF. 2016. Risk factors for growth of intracranial aneurysms: a systematic review and meta-analysis. AJNR Am J Neuroradiol. 37(4):615–620.
  • Can A, Du R. 2016. Association of hemodynamic factors with intracranial aneurysm formation and rupture: Systematic review and meta-analysis. Neurosurgery. 78(4):510–520.
  • Cantwell CD, Moxey D, Comerford A, Bolis A, Rocco G, Mengaldo G, De Grazia D, Yakovlev S, Lombard JE, Ekelschot D, et al. 2015. Nektar++: An open-source spectral/hp element framework. Comput Phys Commun. 192:205–219.
  • Castro MA, Putman CM, Sheridan MJ, Cebral JR. 2009. Hemodynamic patterns of anterior communicating artery aneurysms: A possible association with rupture. AJNR Am J Neuroradiol. 30(2):297–302.
  • Castro MA, Olivares MCA, Putman CM, Cebral JR. 2014. Unsteady wall shear stress analysis from image-based computational fluid dynamic aneurysm models under newtonian and casson rheological models. Med Biol Eng Comput. 52(10):827–839.
  • Cebral JR, Raschi M. 2013. Suggested connections between risk factors of intracranial aneurysms: a review. Ann Biomed Eng. 41(7):1366–1383.
  • Cebral JR, Sheridan M, Putman CM. 2010. Hemodynamics and bleb formation in intracranial aneurysms. AJNR Am J Neuroradiol. 31(2):304–310.
  • Cebral JR, Mut F, Weir J, Putman C. 2011. Quantitative characterization of the hemodynamic environment in ruptured and unruptured brain aneurysms. AJNR Am J Neuroradiol. 32(1):145–151.
  • Cebral JR, Vazquez M, Sforza DM, Houzeaux G, Tateshima S, Scrivano E, Bleise C, Lylyk P, Putman CM. 2015. Analysis of hemodynamics and wall mechanics at sites of cerebral aneurysm rupture. J Neurointerv Surg. 7(7):530–536.
  • Challa V, Han H-C. 2007. Spatial variations in wall thickness, material stiffness and initial shape affect wall stress and shape of intracranial aneurysms. Neurol Res. 29(6):569–577.
  • Chen W, Yang Y, Xing W, Peng Y, Qiu J, He Z, Wang Q. 2010. Applications of multislice ct angiography in the surgical clipping and endovascular coiling of intracranial aneurysms. J Biomed Res. 24(6):467–473.
  • Chiu J-J, Chien S. 2011. Effects of disturbed flow on vascular endothelium: Pathophysiological basis and clinical perspectives. Physiol Rev. 91(1):327–387.
  • Crompton MR. 1966. Mechanism of growth and rupture in cerebral berry aneurysms. Br Med J. 1(5496):1138–1142.
  • David AS, Vitor MP. 2019. How patient specific are patient-specific computational models of cerebral aneurysms? An overview of sources of error and variability. Neurosurg Focus FOC. 47(1):E14.
  • Detmer FJ, Chung BJ, Jimenez C, Hamzei-Sichani F, Kallmes D, Putman C, Cebral JR. 2019. Associations of hemodynamics, morphology, and patient characteristics with aneurysm rupture stratified by aneurysm location. Neuroradiology. 61(3):275–284.
  • Etminan N, Beseoglu K, Barrow Daniel L, Bederson J, Brown Robert D, Connolly ES, Derdeyn Colin P, Hänggi D, Hasan D, Juvela S, et al. 2014. Multidisciplinary consensus on assessment of unruptured intracranial aneurysms: proposal of an international research group. Stroke. 45(5):1523–1530.
  • Etminan N, Brown J, Robert D, Beseoglu K, Juvela S, Raymond J, Morita A, Torner JC, Derdeyn CP, Raabe A, et al. 2015. The unruptured intracranial aneurysm treatment score: a multidisciplinary consensus. Neurology. 85(10):881–889.
  • Frösen J, Tulamo R, Paetau A, Laaksamo E, Korja M, Laakso A, Niemelä M, Hernesniemi J. 2012. Saccular intracranial aneurysm: pathology and mechanisms. Acta Neuropathol. 123(6):773–786.
  • Greving JP, Wermer MJH, Brown J, Robert D, Morita A, Juvela S, Yonekura M, Ishibashi T, Torner JC, Nakayama T, et al. 2014. Development of the phases score for prediction of risk of rupture of intracranial aneurysms: a pooled analysis of six prospective cohort studies. Lancet Neurol. 13(1):59–66.
  • Himburg HA, Grzybowski DM, Hazel AL, LaMack JA, Li X-M, Friedman MH. 2004. Spatial comparison between wall shear stress measures and porcine arterial endothelial permeability. Am J Physiol Heart Circ Physiol. 286(5):H1916–H1922.
  • Hoh BL, Sistrom CL, Firment CS, Fautheree GL, Velat GJ, Whiting JH, Reavey-Cantwell JF, Lewis SB. 2007. Bottleneck factor and height-width ratio: Association with ruptured aneurysms in patients with multiple cerebral aneurysms. Neurosurgery. 61(4):716–723.
  • Hoi Y, Wasserman BA, Xie YJ, Najjar SS, Ferruci L, Lakatta EG, Gerstenblith G, Steinman DA. 2010. Characterization of volumetric flow rate waveforms at the carotid bifurcations of older adults. Physiol Meas. 31(3):291–302.
  • Janiga G, Berg P, Sugiyama S, Kono K, Steinman DA. 2015. The computational fluid dynamics rupture challenge 2013—phase i: Prediction of rupture status in intracranial aneurysms. AJNR Am J Neuroradiol. 36(3):530–536.
  • Jiang P, Liu Q, Wu J, Chen X, Li M, Li Z, Yang S, Guo R, Gao B, Cao Y, et al. 2019. Hemodynamic characteristics associated with thinner regions of intracranial aneurysm wall. J Clin Neurosci. 67:185–190.
  • Juvela S. 2019. Treatment scoring of unruptured intracranial aneurysms. Stroke. 50(9):2344–2350.
  • Kallmes DF. 2012. Point: CFD-computational fluid dynamics or confounding factor dissemination. AJNR Am J Neuroradiol. 33(3):395–396.
  • Khan M, Valen-Sendstad K, Steinman D. 2015. Narrowing the expertise gap for predicting intracranial aneurysm hemodynamics: impact of solver numerics versus mesh and time-step resolution. Am J Neuroradiol. 36(7):0195–6108.
  • Khan MO, Steinman DA, Valen-Sendstad K. 2017. Non-newtonian versus numerical rheology: Practical impact of shear-thinning on the prediction of stable and unstable flows in intracranial aneurysms. Int J Numer Meth Biomed Engng. 33(7):e2836–7939.
  • Kono K, Fujimoto T, Shintani A, Terada T. 2012. Hemodynamic characteristics at the rupture site of cerebral aneurysms: a case study. Neurosurgery. 71(6):E1202–8; discussion 1209.
  • Li M, Wang J, Liu J, Zhao C, Yang X. 2018a. Hemodynamics in ruptured intracranial aneurysms with known rupture points. World Neurosurg. 118:e721–e726.
  • Liang L, Steinman DA, Brina O, Chnafa C, Cancelliere NM, Pereira VM. 2019. Towards the clinical utility of cfd for assessment of intracranial aneurysm rupture - a systematic review and novel parameter-ranking tool. J Neurointerv Surg. 11(2):153–158.
  • Lindgren Antti E, Koivisto T, Björkman J, von und zu Fraunberg M, Helin K, Juha EJ, Frösen J. 2016. Irregular shape of intracranial aneurysm indicates rupture risk irrespective of size in a population-based cohort. Stroke. 47(5):1219–1226.
  • Madhavan LR, Baoshun M, Robert EH. 2005. Quantified aneurysm shape and rupture risk. J Neurosurg. 102(2):355–362.
  • Mahsa D, Priya N, John G, David F, Gonzalez LF, Amanda R. 2019. Hemodynamic and morphological characteristics of a growing cerebral aneurysm. Neurosurg Focus FOC. 47(1):E13.
  • Meng H, Wang Z, Hoi Y, Gao L, Metaxa E, Daniel DS, Kolega J. 2007. Complex hemodynamics at the apex of an arterial bifurcation induces vascular remodeling resembling cerebral aneurysm initiation. Stroke. 38(6):1924–1931. URL https://doi.org/10.1161/STROKEAHA.106.481234.
  • Meng H, Tutino VM, Xiang J, Siddiqui A. 2014. High WSS or low WSS? complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: toward a unifying hypothesis. AJNR Am J Neuroradiol. 35(7):1254–1262.
  • Mohamied Y, Sherwin SJ, Weinberg PD. 2017. Understanding the fluid mechanics behind transverse wall shear stress. J Biomech. 50:102–109.
  • Najafi M, Cancelliere NM, Brina O, Bouillot P, Vargas MI, Delattre BMA, Pereira VM, Steinman DA. 2021. How patient-specific do internal carotid artery inflow rates need to be for computational fluid dynamics of cerebral aneurysms? J NeuroIntervent Surg. 13(5):459–464.
  • Philipp B, Sylvia S, Samuel V, Oliver B, Gábor J. 2019. A review on the reliability of hemodynamic modeling in intracranial aneurysms: why computational fluid dynamics alone cannot solve the equation. Neurosurg Focus FOC. 47(1):E15.
  • Raymond J, Chagnon M, Collet JP, Guilbert F, Weill A, Roy D. 2004. A randomized trial on the safety and efficacy of endovascular treatment of unruptured intracranial aneurysms is feasible. Interv Neuroradiol. 10(2):103–112.
  • Sadasivan C, Fiorella DJ, Woo HH, Lieber BB. 2013. Physical factors effecting cerebral aneurysm pathophysiology. Ann Biomed Eng. 41(7):1347–1365.
  • Schneiders J, Marquering H, Van den Berg R, VanBavel E, Velthuis B, Rinkel G, Majoie C. 2014. Rupture-associated changes of cerebral aneurysm geometry: high-resolution 3d imaging before and after rupture. AJNR Am J Neuroradiol. 35(7):1358–1362.
  • Sforza DM, Putman CM, Cebral JR. 2009. Hemodynamics of cerebral aneurysms. Annu Rev Fluid Mech. 41:91–107.
  • Sforza DM, Kono K, Tateshima S, Viñuela F, Putman C, Cebral JR. 2016. Hemodynamics in growing and stable cerebral aneurysms. J Neurointerv Surg. 8(4):407–412.
  • Skodvin TØ, Johnsen L-H, Gjertsen Ø, Isaksen JG, Sorteberg A. 2017. Cerebral aneurysm morphology before and after rupture: nationwide case series of 29 aneurysms. Stroke. 48(4):880–886.
  • Sugiyama S-I, Meng H, Funamoto K, Inoue T, Fujimura M, Nakayama T, Omodaka S, Shimizu H, Takahashi A, Tominaga T. 2012. Hemodynamic analysis of growing intracranial aneurysms arising from a posterior inferior cerebellar artery. World Neurosurg. 78(5):462–468.
  • Sugiyama S-i, Niizuma K, Nakayama T, Shimizu H, Endo H, Inoue T, Fujimura M, Ohta M, Takahashi A, Tominaga T. 2013. Relative residence time prolongation in intracranial aneurysms: A possible association with atherosclerosis. Neurosurgery. 73(5):767–776.
  • Tamer H, Eugene VT, Tsutomu S, Hiroaki S, Masayuki E, Yasushi M, Kazuyoshi T, Teiji T, Akira T. 2005. A proposed parent vessel geometry—based categorization of saccular intracranial aneurysms: computational flow dynamics analysis of the risk factors for lesion rupture. Journal of Neurosurgery. 103(4):662–680. URL https://thejns.org/view/journals/j-neurosurg/103/4/article-p662.xml.
  • Tateshima S, Murayama Y, Villablanca JP, Morino T, Nomura K, Tanishita K, Viñuela F. 2003. In vitro measurement of fluid-induced wall shear stress in unruptured cerebral aneurysms harboring blebs. Stroke. 34(1):187–192.
  • Valen-Sendstad K, Piccinelli M, KrishnankuttyRema R, Steinman DA. 2015. Estimation of inlet flow rates for image-based aneurysm cfd models: Where and how to begin? Ann Biomed Eng. 43(6):1422–1431.
  • Vlak MHM, Algra A, Brandenburg R, Rinkel GJE. 2011. Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis. Lancet Neurol. 10(7):626–636.
  • Voß S, Glaßer S, Hoffmann T, Beuing O, Weigand S, Jachau K, Preim B, Thévenin D, Janiga G, Berg P. 2016. Fluid-structure simulations of a ruptured intracranial aneurysm: Constant versus patient-specific wall thickness. Comput Math Methods Med. 2016:9854539–9854539.
  • Wermer MJH, van der Schaaf IC, Algra A, Rinkel GJE. 2007. Risk of rupture of unruptured intracranial aneurysms in relation to patient and aneurysm characteristics. Stroke. 38(4):1404–1410.
  • Wiebers D. 2003. Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. The Lancet. 362(9378):103–110.
  • Xiang J, Natarajan Sabareesh K, Tremmel M, Ma D, Mocco J, Hopkins LN, Siddiqui Adnan H, Elad IL, Meng H. 2011. Hemodynamic–morphologic discriminants for intracranial aneurysm rupture. Stroke. 42(1):144–152.
  • Xiang J, Tutino VM, Snyder KV, Meng H. 2014. Cfd: Computational fluid dynamics or confounding factor dissemination? the role of hemodynamics in intracranial aneurysm rupture risk assessment. AJNR Am J Neuroradiol. 35(10):1849–1857.
  • Xiang J, Yu J, Choi H, Dolan Fox JM, Snyder KV, Levy EI, Siddiqui AH, Meng H. 2015. Rupture resemblance score (rrs): toward risk stratification of unruptured intracranial aneurysms using hemodynamic-morphological discriminants. J Neurointerv Surg. 7(7):490–495.
  • Zhang Y, Mu S, Chen J, Wang S, Li H, Yu H, Jiang F, Yang X. 2011. Hemodynamic analysis of intracranial aneurysms with daughter blebs. Eur Neurol. 66(6):359–367.
  • Zhang Y, Jing L, Liu J, Li C, Fan J, Wang S, Li H, Yang X. 2016. Clinical, morphological, and hemodynamic independent characteristic factors for rupture of posterior communicating artery aneurysms. J NeuroIntervent Surg. 8(8):808–812.
  • Zhang Y, Jing L, Zhang Y, Liu J, Yang X. 2016. Low wall shear stress is associated with the rupture of intracranial aneurysm with known rupture point: case report and literature review. BMC Neurol. 16(1):231.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.