604
Views
2
CrossRef citations to date
0
Altmetric
Articles

Porous interbody fusion cage design via topology optimization and biomechanical performance analysis

ORCID Icon, , , , , & show all
Pages 650-659 | Received 11 Apr 2022, Accepted 20 May 2022, Published online: 02 Jun 2022

References

  • Abdulkarim JA, Dhingsa R, Finlay DB. 2003. Magnetic resonance imaging of the cervical spine: frequency of degenerative changes in the intervertebral disc with relation to age. Clin Radiol. 58(12):980–984.
  • Blais MB, Rider SM, Sturgeon DJ, Blucher J, Zampini JM, Kang JD, Schoenfeld AJ. 2017. Establishing objective volume-outcome measures for anterior and posterior cervical spine fusion. Clin Neurol Neurosurg. 161:65–69.
  • Broekema A, Groen R, Tegzess E, Reneman MF, Kuijlen J. 2021. Anterior or posterior approach in the surgical treatment of cervical radiculopathy; neurosurgeons' preference in the Netherlands. Interdiscipl Neurosurg. 23:100930.
  • Bružauskaitė I, Bironaitė D, Bagdonas E, Bernotienė E. 2016. Scaffolds and cells for tissue regeneration: different scaffold pore sizes-different cell effects. Cytotechnology. 68(3):355–369.
  • Cao SN, Bin S. 2018. Establishment and significance of three-dimensional finite element model of C3-C7 in cervical spondylotic radiculopathy. Shan Dong Yi Yao. 58(32):5–8.
  • Chuah HG, Rahim IA, Yusof MI. 2010. Topology optimisation of spinal interbody cage for reducing stress shielding effect. Comput Methods Biomech Biomed Eng. 13(3):319–326.
  • Das K, Couldwell WT, Sava G, Taddonio RF. 2001. Use of cylindrical titanium mesh and locking plates in anterior cervical fusion. Technical note. J Neurosurg. 94(1 Suppl):174–178.
  • Dean CL, Gabriel JP, Cassinelli EH, Bolesta MJ, Bohlman HH. 2009. Degenerative spondylolisthesis of the cervical spine: analysis of 58 patients treated with anterior cervical decompression and fusion. Spine J. 9(6):439–446.
  • Elias CN, Fernandes DJ, De Souza FM, Monteiro EDS, De Biasi RS. 2019. Mechanical and clinical properties of titanium and titanium-based alloys (Ti G2, TiG4 cold worked nanostructured and Ti G5) for biomedical applications. J Mater Res Technol. 8(1):1060–1069.
  • Finn MA, Brodke DS, Daubs M, Patel A, Bachus KN. 2009. Local and global subaxial cervical spine biomechanics after single-level fusion or cervical arthroplasty. Eur Spine J. 18(10):1520–1527.
  • Guo LX, Yin JY. 2019. Finite element analysis and design of an interspinous device using topology optimization. Med Biol Eng Comput. 57(1):89–98.
  • Hacker RJ. 2002. Threaded cages for degenerative cervical disease. Clin Orthop Relat R. 394(1):39–46.
  • Hernandez JL, Woodrow KA. 2022. Medical applications of porous biomaterials: features of porosity and tissue-specific implications for biocompatibility. Adv Healthcare Mater. 11(9):2102087.
  • Huang H, Liu J, Wang L, Fan Y. 2021. A critical review on the biomechanical study of cervical interbody fusion cage. Med Novel Technol Dev. 11:100070.
  • Hua W, Zhi J, Ke W, Wang B, Yang S, Li L, Yang C. 2020a. Adjacent segment biomechanical changes after one- or two-level anterior cervical discectomy and fusion using either a zero-profile device or cage plus plate: a finite element analysis. Comput Biol Med. 120:103760.
  • Hua W, Zhi J, Wang B, Ke W, Sun W, Yang S, Li L, Yang C. 2020b. Biomechanical evaluation of adjacent segment degeneration after one- or two-level anterior cervical discectomy and fusion versus cervical disc arthroplasty: a finite element analysis. Comput Methods Prog Biomed. 189(6):105352.
  • Kang KT, Chun HJ, Kim HJ, Yeom JS, Lee KI. 2012. Finite element analysis of instrumented posterior lumbar interbody fusion cages for reducing stress shielding effects: comparison of the cfrp cage and titanium cage. Compos Res. 25(4):98–104.
  • Kurtz SM, Devine JN. 2007. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials. 28(32):4845–4869.
  • Lee SH, Im YJ, Kim KT, Kim YH, Park WM, Kim K. 2011. Comparison of cervical spine biomechanics after fixed- and mobile-core artificial disc replacement: a finite element analysis. Spine (Phila Pa 1976). 36(9):700–708.
  • Li Q, Mo Z, Fan Y. 2016. Biomechanical comparison of cervical arthroplasty with and without posterior longitudinal ligament resection: a finite element study. J Med Imaging Health Inf. 6(7):1559–1565.
  • Lin CY, Hsiao CC, Chen PQ, Hollister SJ. 2004. Interbody fusion cage design using integrated global layout and local microstructure topology optimization. Spine (Phila Pa 1976). 29(16):1747–1754.
  • Lv Y, Wang B, Liu G, Tang Y, Lu E, Xie K, Lan C, Liu J, Qin Z, Wang L. 2021. Metal material, properties and design methods of porous biomedical scaffolds for additive manufacturing: a review. Front Bioeng Biotechnol. 9:641130.
  • Mo Z, Zhao Y, Du C, Sun Y, Zhang M, Fan Y. 2015. Does location of rotation center in artificial disc affect cervical biomechanics? Spine (Phila Pa 1976). 40(8):E469–475.
  • Mobbs RJ, Phan K, Assem Y, Pelletier M, Walsh WR. 2016. Combination Ti/PEEK ALIF cage for anterior lumbar interbody fusion: early clinical and radiological results. J Clin Neurosci. 34:94–99.
  • Moussa A, Tanzer M, Pasini D. 2018. Cervical fusion cage computationally optimized with porous architected Titanium for minimized subsidence. J Mech Behav Biomed Mater. 85:134–151.
  • Palm WJ, Rosenberg WS, Keaveny TM. 2002. Load transfer mechanisms in cylindrical interbody cage constructs. Spine (Phila Pa 1976). 27(19):2101–2107.
  • Pan CT, Lin CH, Huang YK, Jang JSC, Lin HK, Kuo CN, Lin DY, Huang JC. 2021. Design of customize interbody fusion cages of Ti64ELI with gradient porosity by selective laser melting process. Micromachines. 12(3):307–327.
  • Panjabi MM, Crisco JJ, Vasavada A, Oda T, Cholewicki J, Nibu K, Shin E. 2001. Mechanical properties of the human cervical spine as shown by three-dimensional load-displacement curves. Spine (Phila Pa 1976). 26(24):2692–2700.
  • Robinson RA, Smith GW. 2010. Anterolateral cervical disc removal and interbody fusion for cervical disc syndrome. SAS J. 4(1):34–35.
  • Rubert M, Vetsch JR, Lehtoviita I, Sommer M, AndréR S, Müller R, Hofmann S. 2020. Scaffold pore geometry influences bone-like tissue formation in dynamic cell culture conditions. BioRxiv.DOI:10.1101/2020.04.24.060525
  • Silvestros P, Preatoni E, Gill HS, Gheduzzi S, Hernandez BA, Holsgrove TP, Cazzola D. 2019. Musculoskeletal modelling of the human cervical spine for the investigation of injury mechanisms during axial impacts. PLoS ONE. 14(5):e0216663–20.
  • Song K, Wang ZH, Lan J, Ma SH. 2021. Porous structure design and mechanical behavior analysis based on TPMS for customized root analogue implant. J Mech Behav Biomed Mater. 115:104222.
  • Sun J, Wang QA, Cai DZ, Gu WX, Ma YM, Su Y, Wei YY, Yuan F. 2021. A lattice topology optimization of cervical interbody fusion cage and finite element comparison with ZK60 and Ti-6Al-4V cages. BMC Musculoskelet Disord. 22(1):390–404.
  • Tang QH, Mo ZJ, Yao J, Li Q, Du CF, Wang LZ, Fan YB. 2014. Biomechanical analysis of different Prodisc-C arthroplasty design parameters after implanted: a numerical sensitivity study based on finite element method. J Biomed Eng. 31(6):1265–1271.
  • Taniguchi N, Fujibayashi S, Takemoto M, Sasaki K, Otsuki B, Nakamura T, Matsushita T, Kokubo T, Matsuda S. 2016. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: an in vivo experiment. Mater Sci Eng C Mater Biol Appl. 59:690–701.
  • Thavasiappan K, Venkatesan MS, Ariffuddeen M, Ponnuchamy O, Ravichandran N, Murugesan G. 2020. Design, analysis, fabrication and testing of pc porous scaffolds using rapid prototyping in clinical applications. Biomedicine. 39(2):339–345.
  • Tovar A, Gano SE, Mason JJ, Renaud JE. 2005. Optimum design of an interbody implant for lumbar spine fixation. Adv Eng Software. 36(9):634–642.
  • van Dijk M, Smit TH, Sugihara S, Burger EH, Wuisman PI. 2002. The effect of cage stiffness on the rate of lumbar interbody fusion: an in vivo model using poly(l-lactic Acid) and titanium cages. Spine (Phila Pa 1976). 27(7):682–688.
  • Wang Y, Arabnejad KS, Tanzer M, Pasini D, Arabnejad S, Tanzer M, Pasini D. 2018b. Hip implant design with three-dimensional porous architecture of optimized graded density. J Mech Des. 140:111406.
  • Wang LZ, Ding XL, Feng WT, Gao YM, Zhao SD, Fan YB. 2021. Biomechanical study on implantable and interventional medical devices. Acta Mech Sin. 37(6):875–894.
  • Wang Z, Wang C, Li C, Qin Y, Zhong L, Chen B, Li Z, Liu H, Chang F, Wang J. 2017. Analysis of factors influencing bone ingrowth into three-dimensional printed porous metal scaffolds: a review. J Alloys Compd. 717:271–285.
  • Wang HW, Wan Y, Li QH, Xia Y, Liu XY, Liu ZQ, Li XG. 2020. Porous fusion cage design via integrated global-local topology optimization and biomechanical analysis of performance. J Mech Behav Biomed Mater. 112:103982.
  • Wang C, Xu DL, Li SJ, Yi C, Zhang XL, He Y, Yu DS. 2020. Effect of pore size on the physicochemical properties and osteogenesis of ti6al4v porous scaffolds with bionic structure. ACS Omega. 5(44):28684–28692.
  • Womack W, Woldtvedt D, Puttlitz CM. 2008. Lower cervical spine facet cartilage thickness mapping. Osteoarthr Cartilage. 16(9):1018–1023.
  • Zhang Y, Attarilar S, Wang L, Lu W, Yang J, Fu Y. 2021. A review on design and mechanical properties of additively manufactured niti implants for orthopedic applications. Int J Bioprint. 7(2):340–368.
  • Zhang SJ, Zarei V, Winkelstein BA, Barocas VH. 2018. Multiscale mechanics of the cervical facet capsular ligament, with particular emphasis on anomalous fiber realignment prior to tissue failure. Biomech Model Mechanobiol. 17(1):133–145.
  • Zhang J, Zhang X, Chen Y, Feng W, Chen X. 2021. Novel design and finite element analysis of diamond-like porous implants with low stiffness. Materials. 14(22):6918.
  • Zhong ZC, Wei SH, Wang JP, Feng CK, Chen CS, Yu CH. 2006. Finite element analysis of the lumbar spine with a new cage using a topology optimization method. Med Eng Phys. 28(1):90–98.
  • Zhou EZ, Huang HW, Zhao YB, Wang LZ, Fan YB. 2022. The effects of titanium mesh cage size on the biomechanical responses of cervical spine after anterior cervical corpectomy and fusion: a finite element study. Clin Biomech (Bristol, Avon). 91:105547.
  • Zhu LY, Li L, Li ZA, Shi JP, Tang WL, Yang JQ, Jiang Q. 2019. Design and biomechanical characteristics of porous meniscal implant structures using triply periodic minimal surfaces. J Transl Med. 17(1):89–99.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.