188
Views
1
CrossRef citations to date
0
Altmetric
Articles

Prediction of abrasive wears behavior of dental composites using an artificial neural network

ORCID Icon & ORCID Icon
Pages 710-720 | Received 26 Jan 2022, Accepted 31 May 2022, Published online: 08 Jun 2022

References

  • Argatov II, Chai YS. 2021. Artificial neural network modeling of sliding wear. P I Mech Eng J: J Eng Tribol. 235(4):748–757.
  • Askarzadeh A, Rezazadeh A. 2013. Artificial neural network training using a new efficient optimization algorithm. Appl Soft Comput. 13(2):1206–1213.
  • Aydin G, Karakurt I, Hamzacebi C. 2014. Artificial neural network and regression models for performance prediction of abrasive waterjet in rock cutting. Int J Adv Manuf Technol. 75(9–12):1321–1330.
  • Baghirli O. 2005. Comparison of Lavenberg-Marquardt, scaled conjugate gradient and Bayesian regularization back-propagation algorithms for multistep ahead wind speed forecasting using multilayer perception feed-forward neural network. Master’s thesis.
  • Betiku E, Taiwo A. 2015. Modeling and optimization of bioethanol production from breadfruit starch hydrolyzate vis-à-vis response surface methodology and artificial neural network. Renew Energy. 74:87–94.
  • Callaghan D, Vaziri A, Nayeb-Hashemi H. 2006. Effect of fiber volume fraction and length on the wear characteristics of glass fiber-reinforced dental composites. Dent Mater. 22(1):84–93.
  • Chandwani V, Agrawal V, Nagar R. 2015. Modeling slump of ready mix concrete using genetic algorithms assisted training of artificial neural networks. Expert Syst Appl. 42(2):885–893.
  • Chang Y, Lin J, Shieh J, Abbod M. 2012. Optimization the initial weights of artificial neural networks via genetic algorithm applied to hip bone fracture prediction. Adv Fuzzy Syst. 9.
  • Chen Y, Sun R, Gao Y, Leopold J. 2017. A nested-ANN prediction model for surface roughness considering the effects of cutting forces and tool vibrations. Measurement. 98:25–34.
  • Demuth H, Beale M. 2000. Neural network toolbox user’s guide version 4. Tech. rep. Natick, MA: The Math Works Inc.
  • Arefi-Oskoui S, Khataee A, Vatanpour V. 2017. Modeling and optimization of NLDH/PVDF ultrafiltration nanocomposite membrane using artificial neural network-genetic algorithm hybrid. ACS Comb Sci. 19(7):464–477.
  • DENIZ ST, OZKAN P, OZKAN G. 2019. The accuracy of the prediction models for surface roughness and micro hardness of denture teeth. Dent Mater J. 38(6):1012–1018.
  • Denli N, Uludag B, Kiliçarslan M, Ozkan Y. 1996. Resistance of artificial acrylic resin teeth to staining. Türkiye Klin Dişhek Bil Derg. 2:38–42.
  • Heintze S, Zellweger G, Grunert I, Muñoz-Viveros C, Hagenbuch K. 2012. Laboratory methods for evaluating the wear of denture teeth and their correlation with clinical results. Dent Mater. 28(3):261–272.
  • Jones S, Jansen R, Fusaro R. 1997. Preliminary investigation of neural network techniques to predict tribological properties. Tribol Trans. 40(2):312–320.
  • Kawano F, Ohguri T, Ichikawa T, Mizuno I, Hasegawa A. 2002. Shock absorbability and hardness of commercially available denture teeth. Int J Prosthodont. 15(3): 243–247.
  • Koksal T, Dikbas I. 2008. Color stability of different denture teeth materials against various staining agents. Dent Mater J. 27(1):139–144.
  • Li S, Wunsch D, O’Hair E, Giesselmann M. 2001. Comparative analysis of regression and artificial neural network models for wind turbine power curve estimation. J Solar Energy Eng. 123(4):327–332.
  • Loyaga-Rendon P, Takahashi H, Hayakawa I, Iwasaki N. 2007. Compositional characteristics and hardness of acrylic and composite resin artificial teeth. J Prosthet Dent. 98(2):141–149.
  • Maleki. E. 2015. Artificial neural networks application for modelling of friction stir welding effects on mechanical properties of 7075-T6 aluminum alloy. IOP Conf Ser: Mater Sci Eng. 103:012034.
  • Maleki E, Bagherifard S, Guagliano M. 2022. Application of artificial intelligence to optimize the process parameters effects on tensile properties of Ti-6Al-4V fabricated by laser powder-bed fusion. Int J Mech Mater Des. 18(1):199–222.
  • Maleki N, Kashanian S, Maleki E, Nazari M. 2017. A novel enzyme based biosensor for catechol detection in water samples using artificial neural network. Biochem Eng J. 128:1–11.
  • Maleki E, Maleki N. 2016. Artificial neural network modeling of Pt/C cathode degradation in PEM fuel cells. J Electron Mater. 45(8): 3822–3834.
  • Maleki E, Mirzaali MJ, Guagliano M, Bagherifard S. 2021. Analyzing the mechano-bactericidal effect of nano-patterned surfaces on different bacteria species. Surf Coat Technol. 408:126782.
  • Maleki E, Unal O. 2021. Shot peening process effects on metallurgical and mechanical properties of 316 L steel via: experimental and neural network modelling. Met Mater Int. 27(2):262–276. doi:10.1007/s12540-019-00448-3.
  • Mete T, Ozkan G, Hapoglu H, Alpbaz M. 2012. Control of dissolved oxygen concentration using neural network in a batch bioreactor. Comput Appl Eng Educ. 20(4):619–628.
  • Meyveci A, Karacan İ, Durmuş H, Çalıgülü U. 2012. Artificial neural network (ANN) approach to hardness prediction of aged aluminium 2024 and 6063 alloys. Mater Test. 54(1):36–40.
  • Moghri M, Madic M, Omidi M, Farahnakian M. 2014. Surface roughness optimization of polyamide-6/nanoclay nanocomposites using artificial neural network: genetic algorithm approach. Sci World J. 2014:1–7.
  • Nuraliza N, Syahrullail S, Faizal M. 2016. Tribological properties of aluminum lubricated with palm olein at different load using pin-on-disk machine. J Tribol. 9:45–59.
  • Özkan G, Aliplik Akın B, Özkan G. 2013. The prediction of chemical oxygen demand (cod) or suspended solid (ss) removal using statistical methods and the artificial neural network in the sugar industrial wastewaters. J Eng Appl Sci. 8:978–983.
  • Ozkan G, Uçan L, Ozkan G. 2010. The prediction of SO2 removal using statistical methods and artificial neural network. Neural Comput Applic. 19(1):67–75.
  • Panda S, Sarangi A, Panigrahi S. 2014. A new training strategy for neural network using shuffled frog-leaping algorithm and application to channel equalization. Int J Electron Commun. 68(11):1031–1036.
  • Pantić M, Đorđević A, Erić M, Mitrović S, Babić M, Džunić D, Stefanović M. 2018. Application of artificial neural network in biotribological research of dental glass ceramic. Tribol Ind. 40(4):692–701.
  • Pati PR, Satpathy MP. 2019. Investigation on red brick dust filled epoxy composites using ant lion optimization approach. Polym Compos. 40(10):3877–3885.
  • Pati PR. 2019. Prediction and wear performance of red brick dust filled glass-epoxy composites using neural networks. Int J Plast Technol. 23(2):253–260.
  • Pati PR, Satapathy A. 2015. Prediction and simulation of wear response of Linz-Donawitz (LD) slag filled glass-epoxy composites using neural computation. Polym Adv Technol. 26(2):121–127.
  • Pati PR, Satpathy MP, Satapathy A. 2018. Experimental investigation on Linz-Donawitz slag filled polypropylene composites using Teaching-Learning based Optimization approach. Polym Compos. 39(11):3944–3951.
  • Powers J, Wataha J. 2008. Dental materials-E-book: properties and manipulation. St Louis, MO: Elsevier Health Sciences, p. 307–309.
  • Pati PR, MP Satpathy. 2021. Effect of process parameters on sliding wear performance of red brick dust-filled glass-epoxy composites. Proc Inst Mech Eng J: J Eng Tribol.
  • Rao K, Varadarajan Y, Rajendra N. 2014. Artificial neural network approach for the prediction of abrasive wear behavior of carbon fabric reinforced epoxy composite. Indian J Eng Mater Sci. 21:16–22.
  • Sajewicz E. 2009. Effect of saliva viscosity on tribological behaviour of tooth enamel. Tribol Int. 42(2):327–332.
  • Pati PR, Satapathy A. 2017. A study on tribological behavior of linz-donawitz slag filled polypropylene composites using experimental design and neural networks, ASME 2017 Gas Turbine India Conf. GTINDIA 2017.
  • Samtaş G. 2014. Measurement and evaluation of surface roughness based on optic system using image processing and artificial neural network. Int J Adv Manuf Technol. 73(1–4):353–364.
  • Suryawanshi A, Behera N. 2020. A review: in vitro investigation of dental composite materials and tooth enamel by using pin-on-disc tribometer, in Proceedings of International Conference on Intelligent Manufacturing and Automation, Singapore.
  • Suryawanshi A, Behera N. 2020. Tribological behavior of dental restorative composites in chewable tobacco environment. Proc Inst Mech Eng H. 234(10):1106–1112.
  • Suryawanshi A, Behera N. 2021. In-vitro wear measurements of dental composite influenced by chewable tobacco environment. J Tribol. 29:84–95.
  • Torrecilla J, Otero L, Sanz P. 2004. A neural network approach for thermal/pressure food processing. J Food Eng. 62(1):89–95.
  • Wiciak-Pikuła M, Felusiak-Czyryca A, Twardowski P. 2020. Tool wear prediction based on artificial neural network during aluminum matrix composite milling. Sensors. 20(20):5798.
  • Yildirim Bicer A, Karakis D, Dogan A, Mert F. 2015. A comparison of wear rate of direct and indirect resin composites: a two-body wear abrasion test. J Compos Mater. 49(21):2599–2607.
  • Zalnezhad E, Sarhan A, Hamdi M. 2013. Surface hardness prediction of CrN thin film coating on AL7075-T6 alloy using fuzzy logic system. Int J Precis Eng Manuf. 14(3):467–473.
  • Zheng K, Liu H. 2014. Investigation on wear prediction model of dental restoration material based on ensemble learning. Mater Res Innov. 18:987–991.
  • Zhu S, Lee S, Hargrove S, Chen G. 2007. Prediction of combustion efficiency of chicken litter using an artificial neural network approach. Fuel. 86(5/6):877–886.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.