2,201
Views
1
CrossRef citations to date
0
Altmetric
Research Article

A novel knee joint model in FEBio with inhomogeneous fibril-reinforced biphasic cartilage simulating tissue mechanical responses during gait: data from the osteoarthritis initiative

, , , , &
Pages 1353-1367 | Received 20 Oct 2021, Accepted 22 Aug 2022, Published online: 05 Sep 2022

References

  • Ahmed AM, Burke DL. 1983. In-vitro of measurement of static pressure distribution in synovial joints—Part I: tibial surface of the knee. J Biomech Eng. 105(3):216–225.
  • Ateshian GA, Kim JJ, Grelsamer RP, Mow VC, Warden WH. 1997. Finite deformation biphasic material properties of bovine articular cartilage from confined compression experiments. J Biomech. 30(97):1157–1164.
  • Ateshian GA, Rajan V, Chahine NO, Canal CE, Hung CT. 2009.Modeling the matrix of articular cartilage using a continuous fiber angular distribution predicts many observed phenomena. J Biomech Eng. 131(6):612–615.
  • Below S, Arnoczky SP, Dodds J, Kooima C, Walter N. 2002. The split-line pattern of the distal femur: A consideration in the orientation of autologous cartilage grafts. Arthroscopy. 18(6):613–617.
  • Benninghoff A. 1925. Form und Bau der Gelenkknorpel in ihren Beziehungenzur Funktion. Z Anat Entwickl Gesch.76(1–3):43–63.
  • Bergmann G, Bender A, Graichen F, Rohlmann A, Trepczynski A, Heller MO, Kutzner I. 2014. Standardized loads acting in knee implants. PLoS ONE 9(1):e86035.
  • Erdemir A. 2016. Open knee: open source modelling & simulation to enable scientific discovery and clinical care in knee biomechanics. J Knee Surg. 19(2):107–116.
  • Erdemir A, Besier TF, Halloran JP, Imhauser CW, Laz PJ, Morrison TM, Shelburne KB. 2019. Deciphering the “Art” in modeling and simulation of the knee joint: overall strategy. J Biomech Eng. 141(7):1–10.
  • Eskelinen ASA, Tanska P, Florea C, Orozco GA, Julkunen P, Grodzinsky AJ, Korhonen RK. 2020. Mechanobiological model for simulation of injured cartilage degradation via proinflammatory cytokines and mechanical. PLoS Comput Biol. 16(6):e1007998–25.
  • Fukubayashi T, Kurosawa H. 1980. The contact area and pressure distribution pattern of the knee: a study of normal and osteoarthrotic knee joints. Acta Orthop Scand. 51(6):871–879.
  • Grood ES, Suntay WJ. 1983. A joint coordinate system for the clinical description of three-dimensional motions: Application to the knee. J Biomech Eng. 105(2):136–144.
  • Halonen KS, Mononen ME, Jurvelin JS, Töyräs J, Korhonen RK. 2013. Importance of depth-wise distribution of collagen and proteoglycans in articular cartilage-A 3D finite element study of stresses and strains in human knee joint. J Biomech. 46(6):1184–1192.
  • Han G, Eriten M, Henak CR. 2020. Rate-dependent adhesion of cartilage and its relation to relaxation mechanisms. J Mech Behav Biomed Mater. 102:103493. 10.1016/j.jmbbm.2019.103493[31634661]
  • Holmes MH, Mow VC. 1990. The nonlinear characteristics of soft gels and hydrated connective tissues in ultrafiltration. J Biomech. 23(11):1145–1156.
  • Hosseini SM, Wilson W, Ito K, Van Donkelaar CC. 2014. A numerical model to study mechanically induced initiation and progression of damage in articular cartilage. Osteoarthr Cartil. 22(1):95–103.
  • Hou C, Ateshian GA. 2016.A Gauss-Kronrod-Trapezoidal integration scheme for modeling biological tissues with continuous fiber distributions. Comput Methods Biomech Biomed Eng.19(8):883–893.
  • Huang A, Hull ML, Howell SM. 2003. The level of compressive load affects conclusions from statistical analyses to determine whether a lateral meniscal autograft restores tibial contact pressure to normal: A study in human cadaveric knees. J Orthop Res. 21(3):459–464.
  • Huang CY, Stankiewicz A, Ateshian GA, Mow VC. 2005. Anisotropy, inhomogeneity, and tension-compression nonlinearity of human glenohumeral cartilage in finite deformation. J Biomech. 38(4):799–809.
  • Jones B, Hung C, Ateshian G. 2016. Biphasic analysis of cartilage stresses in the patellofemoral joint. J Knee Surg. 29(2):92–898.
  • Julkunen P, Kiviranta P, Wilson W, Jurvelin JS, Korhonen RK. 2007. Characterization of articular cartilage by combining microscopic analysis with a fibril-reinforced finite-element model. J Biomech. 40(8):1862–1870.
  • Kääb MJ, Richards RG, Ito K, Ap Gwynn I, Nötzli HP. 2003. Deformation of chondrocytes in articular cartilage under compressive load: A morphological study. Cells Tissues Organs. 175(3):133–139.
  • Kazemi M, Li LP. 2014. A viscoelastic poromechanical model of the knee joint in large compression. Med Eng Phys. 36(8):998–1006.
  • Klets O, Mononen ME, Liukkonen MK, Nevalainen MT, Nieminen MT, Saarakkala S, Korhonen RK. 2018. Estimation of the effect of body weight on the development of osteoarthritis based on cumulative stresses in cartilage: data from the osteoarthritis initiative. Ann Biomed Eng. 46(2):334–344.
  • Klets O, Mononen ME, Tanska P, Nieminen MT, Korhonen RK, Saarakkala S. 2016. Comparison of different material models of articular cartilage in 3D computational modeling of the knee: Data from the Osteoarthritis Initiative (OAI). J Biomech. 49(16):3891–3900.
  • Korhonen RK, Jurvelin JS. 2010. Compressive and tensile properties of articular cartilage in axial loading are modulated differently by osmotic environment. Med Eng Phys. 32(2):155–160.
  • Korhonen RK, Laasanen MS, Töyräs J, Lappalainen R, Helminen HJ, Jurvelin JS. 2003. Fibril reinforced poroelastic model predicts specifically mechanical behavior of normal, proteoglycan depleted and collagen degraded articular cartilage. J Biomech. 36(9):1373–1379.
  • Korhonen RK, Laasanen MS, Töyräs J, Rieppo J, Hirvonen J, Helminen HJ, Jurvelin JS. 2002. Comparison of the equilibrium response of articular cartilage in unconfined compression, confined compression and indentation. J Biomech. 35(7):903–909.
  • Lai WM, Mow VC. 1980. Drag-induced compression of articular cartilage during a permeation experiment. Biorheology. 17(1–2):111–123.
  • Li J, Hua X, Jin Z, Fisher J, Wilcox RK. 2014. Biphasic investigation of contact mechanics in natural human hips during activities. Proc Inst Mech Eng H. 228(6):556–563.
  • Li J, Hua X, Jones AC, Williams S, Jin Z, Fisher J, Wilcox RK. 2016. The influence of the representation of collagen fibre organisation on the cartilage contact mechanics of the hip joint. J Biomech. 49(9):1679–1685.
  • Li J, Stewart TD, Jin Z, Wilcox RK, Fisher J. 2013. The influence of size, clearance, cartilage properties, thickness and hemiarthroplasty on the contact mechanics of the hip joint with biphasic layers. J Biomech. 46(10):1641–1647.
  • Li LP, Buschmann MD, Shirazi-Adl A. 2000.A fibril reinforced nonhomogeneous poroelastic model for articular cartilage: Inhomogeneous response in unconfined compression. J Biomech. 33(12):1533–1541.
  • Li LP, Herzog W, Korhonen RK, Jurvelin JS. 2005. The role of viscoelasticity of collagen fibers in articular cartilage: Axial tension versus compression. Med Eng Phys. 27(1):51–57.
  • Liukkonen MK, Mononen ME, Klets O, Arokoski JP, Saarakkala S, Korhonen RK. 2017. Simulation of subject-specific progression of knee osteoarthritis and comparison to experimental follow-up data: Data from the osteoarthritis initiative. Sci Rep. 7(1):1–14.
  • Maas S, Rawlins D, Weiss J, Athesian G. 2019. FEBio Theory Manual Version 2.9 [Internet]. https://help.febio.org/FEBio/FEBio_tm_2_9/.
  • Meng Q, An S, Damion RA, Jin Z, Wilcox R, Fisher J, Jones A. 2017. The effect of collagen fibril orientation on the biphasic mechanics of articular cartilage. J Mech Behav Biomed Mater. 65:439–453.
  • Meng Q, Jin Z, Wilcox R, Fisher J. 2014. Computational investigation of the time-dependent contact behaviour of the human tibiofemoral joint under body weight. Proc Inst Mech Eng H. 228(11):1193–1207.
  • Mononen ME, Jurvelin JS, Korhonen RK. 2015. Implementation of a gait cycle loading into healthy and meniscectomised knee joint models with fibril-reinforced articular cartilage. Comput Methods Biomech Biomed Eng. 18(2):141–152.
  • Mononen ME, Liukkonen MK, Korhonen RK. 2019. Utilizing atlas-based modeling to predict knee joint cartilage degeneration: data from the osteoarthritis initiative. Ann Biomed Eng. 47(3):813–825. 10.1007/s10439-018-02184-y.
  • Mononen ME, Mikkola MT, Julkunen P, Ojala R, Nieminen MT, Jurvelin JS, Korhonen RK. 2012. Effect of superficial collagen patterns and fibrillation of femoral articular cartilage on knee joint mechanics — A 3D finite element analysis. J Biomech. 45(3):579–587.
  • Mononen ME, Tanska P, Isaksson H, Korhonen RK. 2016. A novel method to simulate the progression of collagen degeneration of cartilage in the knee: Data from the osteoarthritis initiative. Sci Rep. 6:21415–21414.
  • Mow VC, Ratcliffe A, Robin Poole A. 1992. Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures. Biomaterials. 13(2):67–97.
  • Neidlin M, Chantzi E, Macheras G, Gustafsson MG, Alexopoulos LG. 2019. An ex vivo tissue model of cartilage degradation suggests that cartilage state can be determined from secreted key protein patterns. PLoS ONE. 14(10):e0224231–17.
  • Nims RJ, Durney KM, Cigan AD, Dusséaux A, Hung CT, Ateshian GA. 2016. Continuum theory of fibrous tissue damage mechanics using bond kinetics: Application to cartilage tissue engineering. Interface Focus. 6(1):20150063.
  • Orozco GA, Tanska P, Florea C, Grodzinsky AJ, Korhonen RK. 2018. A novel mechanobiological model can predict how physiologically relevant dynamic loading causes proteoglycan loss in mechanically injured articular cartilage. Sci Rep. 8(1):1–16.
  • Peña E, Pérez Del Palomar A, Calvo B, Martínez MA, Doblaré M. 2007. Computational modelling of diarthrodial joints.Physiological, pathological and pos-surgery simulations. Arch Computat Methods Eng. 14(1):47–91.
  • Pierce DM, Unterberger MJ, Trobin W, Ricken T, Holzapfel GA. 2016. A microstructurally based continuum model of cartilage viscoelasticity and permeability incorporating measured statistical fiber orientations. Biomech Model Mechanobiol. 15(1):229–244.
  • Rooks NB, Schneider MTY, Erdemir A, Halloran JP, Laz PJ, Shelburne KB, Hume DR, Imhauser CW, Zaylor W, Elmasry S. 2021. Deciphering the “art” in modeling and simulation of the knee joint: variations in model development. J Biomech Eng. 143(6):1–12.
  • Roth V, Mow VC. 1980. The intrinsic tensile behavior of the matrix of bovine articular cartilage and its variation with age. J Bone Jt Surg. 62(7):1102–1117.
  • Sasazaki Y, Shore R, Seedhom BB. 2006. Deformation and failure of cartilage in the tensile mode. J Anat. 208(6):681–694.
  • Shegaf A, Speirs A. 2020. Cartilage biomechanical response differs under physiological biaxial loads and uniaxial cyclic compression. J Biomech Eng. 142(5):054501.
  • Simon BR. 1992. Multiphase poroelastic finite element models for soft tissue structures. ApplMech Rev. 45(6):191–218.
  • Soulhat J, Buschmann MD, Shirazi-Adl A. 1999. A fibril-network-reinforced biphasic model of cartilage in unconfined compression. J Biomech Eng. 121(3):340–347.
  • Venäläinen MS, Mononen ME, Salo J, Räsänen LP, Jurvelin JS, Töyräs J, Virén T, Korhonen RK. 2016. Quantitative evaluation of the mechanical risks caused by focal cartilage defects in the knee. Sci Rep. 6:37538–37511. (November):
  • Villegas DF, Maes JA, Magee SD, Haut Donahue TL. 2007. Failure properties and strain distribution analysis of meniscal attachments. J Biomech. 40(12):2655–2662.
  • Wilson W, Van Donkelaar CC, Van Rietbergen B, Ito K, Huiskes R. 2004. Stresses in the local collagen network of articular cartilage: A poroviscoelastic fibril-reinforced finite element study. J Biomech. 37(3):357–366.
  • Wilson W, Van DonkelaarCC, Van RietbergenB, Ito K, HuiskesR. 2005. Erratum: A fibril-reinforced poroviscoelastic swelling model for articular cartilage (J Biomech(2005) 38 (1195-1204) PII: S0021929004003367 and. J Biomech. 38(6):2138–2140.
  • Zielinska B, Haut Donahue TL. 2006. 3D finite element model of meniscectomy: Changes in joint contact behavior. J Biomech Eng. 128(1):115–123.