174
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Effect of laryngeal jet on dry powder inhaler aerosol deposition: a numerical simulation

, , , , , & show all
Pages 1859-1874 | Received 22 Jun 2022, Accepted 19 Nov 2022, Published online: 13 Dec 2022

References

  • Abdollahi H, Babamiri A, Ahookhosh K, Farnoud A, Nabaei M. 2021. Effects of inhalation flow rate on particle deposition and flow structure in a model of tracheobronchial airway. In: 2021 28th National and 6th International Iranian Conference on Biomedical Engineering (ICBME). Tehran, Iran: IEEE; p. 101–106.
  • Adler K, Brücker C. 2007. Dynamic flow in a realistic model of the upper human lung airways. Exp Fluids. 43(2–3):411–423.
  • Ahookhosh K, Pourmehran O, Aminfar H, Mohammadpourfard M, Sarafraz MM, Hamishehkar H. 2020. Development of human respiratory airway models: a review. Eur J Pharm Sci. 145:105233.
  • Ahookhosh K, Saidi M, Aminfar H, Mohammadpourfard M, Hamishehkar H, Yaqoubi S. 2020. Dry powder inhaler aerosol deposition in a model of tracheobronchial airways: validating CFD predictions with in vitro data. Int J Pharm. 587:119599.
  • Ahookhosh K, Saidi M, Mohammadpourfard M, Aminfar H, Hamishehkar H, Farnoud A, Schmid O. 2021. Flow structure and particle deposition analyses for optimization of a pressurized metered dose inhaler (pMDI) in a model of tracheobronchial airway. Eur J Pharm Sci. 164:105911.
  • Ahookhosh K, Yaqoubi S, Mohammadpourfard M, Hamishehkar H, Aminfar H. 2019. Experimental investigation of aerosol deposition through a realistic respiratory airway replica: an evaluation for MDI and DPI performance. Int J Pharm. 566:157–172.
  • Ambrus R, Benke E, Farkas Á, Balásházy I, Szabó-Révész P. 2018. Novel dry powder inhaler formulation containing antibiotic using combined technology to improve aerodynamic properties. Eur J Pharm Sci. 123:20–27.
  • Bass K, Farkas D, Longest W. 2019. Optimizing aerosolization using computational fluid dynamics in a pediatric air-jet dry powder inhaler. AAPS PharmSciTech. 20(8):329.
  • Bass K, Longest W. 2020. Development of dry powder inhaler patient interfaces for improved aerosol delivery to children. AAPS PharmSciTech. 21(5):1–19.
  • Bates AJ, Cetto R, Doorly DJ, Schroter RC, Tolley NS, Comerford A. 2016. The effects of curvature and constriction on airflow and energy loss in pathological tracheas. Respir Physiol Neurobiol. 234:69–78.
  • Borojeni AAT, Noga ML, Vehring R, Finlay WH. 2014. Measurements of total aerosol deposition in intrathoracic conducting airway replicas of children. J Aerosol Sci. 73:39–47.
  • Broeders MEAC, Sanchis J, Levy ML, Crompton GK, Dekhuijzen PNR, ADMIT Working Group. 2009. The ADMIT series—issues in inhalation therapy. 2) Improving technique and clinical effectiveness. Prim Care Respir J. 18(2):76–82.
  • Chan T, Lippmann M. 1980. Experimental measurements and empirical modelling of the regional deposition of inhaled particles in humans. Am Ind Hyg Assoc J. 41(6):399–409.
  • Chan JGY, Wong J, Zhou QT, Leung SSY, Chan H-K. 2014. Advances in device and formulation technologies for pulmonary drug delivery. Aaps Pharmscitech. 15(4):882–897.
  • Cheng Y-S, Zhou Y, Chen BT. 1999. Particle deposition in a cast of human oral airways. Aerosol Sci Technol. 31(4):286–300.
  • Chrystyn H, Price D. 2009. Not all asthma inhalers are the same: factors to consider when prescribing an inhaler. Prim Care Respir J. 18(4):243–249.
  • Ciloglu D. 2021. Numerical simulation of the unsteady flow field in the human pulmonary acinus. Sādhanā. 46:186.
  • Corcoran TE, Chigier N. 2000. Characterization of the laryngeal jet using phase Doppler interferometry. J Aerosol Med. 13(2):125–137.
  • Crowe CT, Troutt TR, Chung JN. 1996. Numerical models for two-phase turbulent flows. Annu Rev Fluid Mech. 28(1):11–43.
  • Cui X, Gutheil E. 2018. Large eddy simulation of the flow pattern in an idealized mouth-throat under unsteady inspiration flow conditions. Respir Physiol Neurobiol. 252–253:38–46.
  • Dai W, Huang F, Yu J, Li R, Tong Z. 2021. Numerical study of effects of device design on drug delivery efficiency for an active dry powder inhaler. J Aerosol Sci. 157:105801.
  • Farkas D, Bonasera S, Bass K, Hindle M, Longest PW. 2020. Advancement of a positive-pressure dry powder inhaler for children: use of a vertical aerosolization chamber and three-dimensional rod array interface. Pharm Res. 37(9):1–14.
  • Farnoud A, Baumann I, Rashidi MM, Schmid O, Gutheil E. 2020. Simulation of patient-specific bi-directional pulsating nasal aerosol dispersion and deposition with clockwise 45° and 90° nosepieces. Comput Biol Med. 123:103816.
  • Farnoud A, Cui X, Baumann I, Gutheil E. 2017. Numerical simulation of the dispersion and deposition of a spray carried by a pulsating airflow in a patient-specific human nasal cavity. Atomiz Spr. 27(11):913–928.
  • Farnoud A, Tofighian H, Baumann I, Garcia GJM, Schmid O, Gutheil E, Rashidi MM. 2020. Large eddy simulations of airflow and particle deposition in pulsating bi-directional nasal drug delivery. Phys Fluids. 32(10):101905.
  • Farnoud A, Tofighian H, Baumann I, Martin AR, Rashidi MM, Menden MP, Schmid O. 2021. Pulsatile bi-directional aerosol flow affects aerosol delivery to the intranasal olfactory region: a patient-specific computational study. Front Pharmacol. 12:2902.
  • Ferrante A, Elghobashi S. 2007. On the accuracy of the two-fluid formulation in direct numerical simulation of bubble-laden turbulent boundary layers. Phys Fluids. 19(4):045105.
  • Hofmann W, Martonen TB, Graham RC. 1989. Predicted deposition of nonhygroscopic aerosols in the human lung as a function of subject age. J Aerosol Med. 2(1):49–68.
  • Horsfield K, Dart G, Olson DE, Filley GF, Cumming G. 1971. Models of the human bronchial tree. J Appl Physiol. 31(2):207–217.
  • Inthavong K, Choi L-T, Tu J, Ding S, Thien F. 2010. Micron particle deposition in a tracheobronchial airway model under different breathing conditions. Med Eng Phys. 32(10):1198–1212.
  • Islam MS, Paul G, Ong HX, Young PM, Gu YT, Saha SC. 2020. A review of respiratory anatomical development, air flow characterization and particle deposition. IJERPH. 17(2):380.
  • Kannan RR, Przekwas AJ, Singh N, Delvadia R, Tian G, Walenga R. 2017. Pharmaceutical aerosols deposition patterns from a dry powder inhaler: Euler Lagrangian prediction and validation. Med Eng Phys. 42:35–47.
  • Kiasadegh M, Emdad H, Ahmadi G, Abouali O. 2020. Transient numerical simulation of airflow and fibrous particles in a human upper airway model. J Aerosol Sci. 140:105480.
  • Kleinstreuer C, Zhang Z. 2003. Laminar-to-turbulent fluid-particle flows in a human airway model. Int J Multiphase Flow. 29(2):271–289.
  • Kleinstreuer C, Zhang Z. 2010. Airflow and particle transport in the human respiratory system. Annu Rev Fluid Mech. 42(1):301–334.
  • Kleinstreuer C, Zhang Z, Kim CS. 2007. Combined inertial and gravitational deposition of microparticles in small model airways of a human respiratory system. J Aerosol Sci. 38(10):1047–1061.
  • Lee H-G, Kim D-W, Park C-W. 2018. Dry powder inhaler for pulmonary drug delivery: human respiratory system, approved products and therapeutic equivalence guideline. J Pharm Investig. 48(6):603–616.
  • Lee J-H, Na Y, Kim S-K, Chung S-K. 2010. Unsteady flow characteristics through a human nasal airway. Respir Physiol Neurobiol. 172(3):136–146.
  • Li Z, Kleinstreuer C, Zhang Z. 2007. Simulation of airflow fields and microparticle deposition in realistic human lung airway models. Part I: Airflow patterns. Eur J Mech. 26(5):632–649.
  • Lin C-L, Tawhai MH, McLennan G, Hoffman EA. 2007. Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways. Respir Physiol Neurobiol. 157(2–3):295–309.
  • Lippmann M, Yeates DB, Albert RE. 1980. Deposition, retention, and clearance of inhaled particles. Br J Ind Med. 37(4):337–362.
  • Lizal F, Elcner J, Hopke PK, Jedelsky J, Jicha M. 2012. Development of a realistic human airway model. Proc Inst Mech Eng H. 226(3):197–207.
  • Longest PW, Hindle M, Choudhuri SD, Xi J. 2008. Comparison of ambient and spray aerosol deposition in a standard induction port and more realistic mouth–throat geometry. J Aerosol Sci. 39(7):572–591.
  • Longest PW, Tian G, Khajeh-Hosseini-Dalasm N, Hindle M. 2016. Validating whole-airway CFD predictions of DPI aerosol deposition at multiple flow rates. J Aerosol Med Pulm Drug Deliv. 29(6):461–481.
  • Longest PW, Tian G, Walenga RL, Hindle M. 2012. Comparing MDI and DPI aerosol deposition using in vitro experiments and a new stochastic individual path (SIP) model of the conducting airways. Pharm Res. 29(6):1670–1688.
  • Luo HY, Liu Y. 2009. Particle deposition in a CT-scanned human lung airway. J Biomech. 42(12):1869–1876.
  • Martonen TB, Zhang Z, Lessmann RC. 1993. Fluid dynamics of the human larynx and upper tracheobronchial airways. Aerosol Sci Technol. 19(2):133–156.
  • Morsi SAJ, Alexander AJ. 1972. An investigation of particle trajectories in two-phase flow systems. J Fluid Mech. 55(2):193–208.
  • Nithiarasu P, Hassan O, Morgan K, Weatherill NP, Fielder C, Whittet H, Ebden P, Lewis KR. 2008. Steady flow through a realistic human upper airway geometry. Int J Numer Meth Fluids. 57(5):631–651.
  • Nithiarasu P, Liu C-B, Massarotti N. 2006. Laminar and turbulent flow calculations through a model human upper airway using unstructured meshes. Commun Numer Methods Eng. 23(12):1057–1069.
  • Pourmehran O, Gorji TB, Gorji-Bandpy M. 2016. Magnetic drug targeting through a realistic model of human tracheobronchial airways using computational fluid and particle dynamics. Biomech Model Mechanobiol. 15(5):1355–1374.
  • Rahimi-Gorji M, Gorji TB, Gorji-Bandpy M. 2016. Details of regional particle deposition and airflow structures in a realistic model of human tracheobronchial airways: two-phase flow simulation. Comput Biol Med. 74:1–17.
  • Rahimi-Gorji M, Pourmehran O, Gorji-Bandpy M, Gorji TB. 2015. CFD simulation of airflow behavior and particle transport and deposition in different breathing conditions through the realistic model of human airways. J Mol Liq. 209:121–133.
  • Schlesinger RB, Bohning DE, Chan TL, Lippmann M. 1977. Particle deposition in a hollow cast of the human tracheobronchial tree. J Aerosol Sci. 8(6):429–445.
  • Singh P, Raghav V, Padhmashali V, Paul G, Islam MS, Saha SC. 2020. Airflow and particle transport prediction through stenosis airways. Int J Environ Res Publ Heal. 17(3):1119.
  • Smola M, Vandamme T, Sokolowski A. 2008. Nanocarriers as pulmonary drug delivery systems to treat and to diagnose respiratory and non respiratory diseases. Int J Nanomed. 3(1):1–19.
  • Sosnowski TR. 2011. Importance of airway geometry and respiratory parameters variability for particle deposition in the human respiratory tract. J Thorac Dis. 3(3):153–155.
  • Terzano C. 2001. Pressurized metered dose inhalers and add-on devices. Pulm Pharmacol Ther. 14(5):351–366.
  • Tsega EG. 2018. Computational fluid dynamics modeling of respiratory airflow in tracheobronchial airways of infant, child, and adult. Comput Math Methods Med. 2018:9603451.
  • Vincken W, Dekhuijzen R, Barnes P, ADMIT Group. 2010. The ADMIT series—issues in inhalation therapy. 4) How to choose inhaler devices for the treatment of COPD. Prim Care Respir J. 19(1):10–20.
  • Virchow JC, Crompton GK, Dal Negro R, Pedersen S, Magnan A, Seidenberg J, Barnes PJ. 2008. Importance of inhaler devices in the management of airway disease. Respir Med. 102(1):10–19.
  • Wee WB, Tavernini S, Martin AR, Amirav I, Majaesic C, Finlay WH. 2017. Dry powder inhaler delivery of tobramycin in in vitro models of tracheostomized children. J Aerosol Med Pulm Drug Deliv. 30(1):64–70.
  • Wei X, Hindle M, Kaviratna A, Huynh BK, Delvadia RR, Sandell D, Byron PR. 2018. In vitro tests for aerosol deposition. VI: realistic testing with different mouth–throat models and in vitro—in vivo correlations for a dry powder inhaler, metered dose inhaler, and soft mist inhaler. J Aerosol Med Pulm Drug Deliv. 31(6):358–371.
  • Weibel ER. 1963. Geometric and dimensional airway models of conductive, transitory and respiratory zones of the human lung. In Morphometry of the human lung. New York: Springer; p. 136–142.
  • Wilcox DC. 1998. Turbulence modeling for CFD. La Canada (CA): DCW Industries.
  • Xi J, April Si X, Dong H, Zhong H. 2018. Effects of glottis motion on airflow and energy expenditure in a human upper airway model. Eur J Mech - B/Fluids. 72:23–37.
  • Xi J, Longest PW, Martonen TB. 2008. Effects of the laryngeal jet on nano- and microparticle transport and deposition in an approximate model of the upper tracheobronchial airways. J Appl Physiol (1985). 104(6):1761–1777.
  • Xu XY, Ni SJ, Fu M, Zheng X, Luo N, Weng WG. 2017. Numerical investigation of airflow, heat transfer and particle deposition for oral breathing in a realistic human upper airway model. J Therm Biol. 70:53–63.
  • Yousefi M, Pourmehran O, Gorji-Bandpy M, Inthavong K, Yeo L, Tu J. 2017. CFD simulation of aerosol delivery to a human lung via surface acoustic wave nebulization. Biomech Model Mechanobiol. 16(6):2035–2050.
  • Zhang Z, Kleinstreuer C, Donohue JF, Kim CS. 2005. Comparison of micro- and nano-size particle depositions in a human upper airway model. J Aerosol Sci. 36(2):211–233.
  • Zhou Y, Cheng Y-S. 2005. Particle deposition in a cast of human tracheobronchial airways. Aerosol Sci Technol. 39(6):492–500.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.