247
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effect of rheological models on pulsatile hemodynamics in a multiply afflicted descending human aortic network

, , &
Pages 116-143 | Received 21 Oct 2022, Accepted 15 Jan 2023, Published online: 28 Jan 2023

References

  • Abbasian M, Shams M, Valizadeh Z, Moshfegh A, Javadzadegan A, Cheng S. 2020a. Effects of different non-Newtonian models on unsteady blood flow hemodynamics in patient-specific arterial models with in-vivo validation. Comput Methods Programs Biomed. 186:105185.
  • Abdelsalam SI, Zaher AZ. 2022. On behavioral response of ciliated cervical canal on the development of electroosmotic forces in spermatic fluid. Math Modell Nat Phenom. 17(27).
  • Ahsaas S, Tiwari S. 2016. Numerical simulation of blood flow through asymmetric and symmetric occlusion in carotid artery. Proceedings of the 3rd International Conference on Fluid Flow, Heat and Mass Transfer (FFHMT’16). (170):1–8.
  • Alishahi M, Alishahi MM, Emdad H. 2011. Sharif University of technology numerical simulation of blood flow in a flexible stenosed abdominal real aorta. Scientia Iranica. 18(6):1297–1305.
  • Alsharif AM, Abdellateef AI, Elmaboud YA, Abdelsalam SI. 2022. Performance enhancement of a DC-operated micropump with electroosmosis in a hybrid nanofluid: fractional Cattaneo heat flux problem. Appl Math Mech (English Edition). 43(6):931–944.
  • Anand M, Rajagopal KR. 2004. A shear-thinning viscoelastic fluid model for describing the flow of blood. Int J Cardiovas Med Sci. 4(2):59–68. http://www.cs.cmu.edu/afs/cs.cmu.edu/project/taos-10/publications/MAKRR2004.pdf.
  • Antonova N. 2012. On some mathematical models in hemorheology. Biotechnol Biotechnol Equip. 26(5):3286–3291.
  • Mahalingam A, Gawandalkar U, Kini G, Buradi A, Araki T, Ikeda N, Nicolaides A, Laird JR, Jss LS. 2016. Numerical analysis of the effect of turbulence transition on the hemodynamics parameters in human coronary arteries. Cardiovas Diag Therapy. 9:3–5.
  • Biro GP. 1982. Comparison of acute cardiovascular effects and oxygen-supply following haemodilution with dextran, stroma-free haemoglobin solution and fluorocarbon suspension. Cardiovasc Res. 16(4):194–204.
  • Blazek J. 2015. Principles of solution of the governing equations. Comput Fluid Dynam Princ Appl. 9(3):29–72.
  • Boutsianis E, Guala M, Olgac U, Wildermuth S, Hoyer K, Ventikos Y, Poulikakos D. 2009a. CFD and PTV steady flow investigation in an anatomically accurate abdominal aortic aneurysm. Trans ASME, J Biomech Eng. 131(1):1–15.
  • Boutsianis E, Guala M, Olgac U, Wildermuth S, Hoyer K, Ventikos Y, Poulikakos D. 2009b. CFD and PTV steady flow investigation in an anatomically accurate abdominal aortic aneurysm. Trans ASME, J Biomech Eng. 131(1):11008.
  • Boyd J, Buick JM, Green S. 2007. Analysis of the Casson and Carreau-Yasuda non-Newtonian blood models in steady and oscillatory flows using the lattice Boltzmann method. Phys Fluids. 19(9):1–9.
  • Caballero AD, Laín S. 2015. Numerical simulation of non-Newtonian blood flow dynamics in human thoracic aorta. Comput Methods Biomech Biomed Engin. 18(11):1200–1216.
  • Carvalho V, Rodrigues N, Ribeiro R, Costa PF, Teixeira JCF, Lima RA, Teixeira SFCF. 2021. Hemodynamic study in 3D printed stenotic coronary artery models: experimental validation and transient simulation. Comput Method Biomech Biomed Eng. 24(6):623–636.
  • Chen J, Lu X. 2004. Numerical investigation of the non-Newtonian blood flow in a bifurcation model with a non-planar branch. Journal of Biomechanics. 37:1899–1911.
  • Chen J, Lu XY, Wang W. 2006. Non-Newtonian effects of blood flow on hemodynamics in distal vascular graft anastomoses. J Biomech. 39(11):1983–1995.
  • Cherry EM, Eaton JK. 2013. Shear thinning effects on blood flow in straight and curved tubes. Phys Fluids. 25(7):1–19.
  • Chiu JJ, Chien S. 2011. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev. 91(1):327–387.
  • Cho YI, Kensey KR. 1991. Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: steady flows. Biorheology. 28(3–4):241–262.
  • Le Dret H, Lucquin B. 2016. The finite volume method.
  • Egelhoff CJ, Budwig RS, Elger DF, Khraishi TA, Johansen KH. 1999. Model studies of the flow in abdominal aortic aneurysms during resting and exercise conditions. J Biomech. 32(12):1319–1329.
  • Errill EW. 1969. Rheology of blood. Physiol Rev. 49(4):863–888.
  • Faizan M, Ali F, Loganathan K, Zaib A, Reddy CA, Abdelsalam SI. 2022. Entropy analysis of sutterby nanofluid flow over a Riga sheet with gyrotactic microorganisms and Cattaneo–Christov double diffusion. Mathematics. 10(17):3157.
  • Faraji A, Sahebi M, SalavatiDezfouli S. 2022. Numerical investigation of different viscosity models on pulsatile blood flow of thoracic aortic aneurysm (TAA) in a patient-specific model. Comput Method Biomech Biomed Eng. 0(0):1–13.
  • Fatahian E, Kordani N, Fatahian H. 2018. A review on rheology of non-Newtonian properties of blood. IIUM Eng J. 19(1):237–250.
  • Ferdows M, Hoque KE, Bangalee MZI, Xenos MA. 2022. Wall shear stress indicators influence the regular hemodynamic conditions in coronary main arterial diseases: cardiovascular abnormalities. Comput Method Biomech Biomed Eng. 0(0):1–14.
  • Fox JA, Hugh AE. 1966. Localization of atheroma: a theory based on boundary layer separation. Br Heart J. 28(3):388–399.
  • Gay M, Zhang L. 2009. Numerical studies of blood flow in healthy, stenosed, and stented carotid arteries. Int J Numer Methods Fluids. 61(4):453–472.
  • Hammoud A, Sharay EY, Tikhomirov AN. 2019. Newtonian and non-Newtonian pulsatile flows through carotid artery bifurcation based on CT image geometry. AIP Conf Proceed. 2171:1–6.
  • Hazer D, Unterhinninghofen R, Kostrzewa M, Kauczor HU, Dillmann R, Richter GM. 2006. A workflow for computational fluid dynamics simulations using patient-specific aortic models. Int Congress FEM Technol. 24(10):1–9.
  • I.E vignon-clementel c. fhjk. 2018. Enhanced reader.pdf. Nature. 388:539–547.
  • Jahangiri M, Saghafian M, Sadeghi MR. 2015. Effects of Non-Newtonian Behavior of Blood on Wall Shear Stress in an Elastic Vessel with Simple and Consecutive Stenosis. Biomedical and Pharmacology Journal. 8(1):123–131. http://www.scopus.com/inward/record.url?eid=2-s2.0-84937214871&partnerID=tZOtx3y1.
  • Jamalian Ardakani SS, Jafarnejad M, Firoozabadi B, Saidi MS. 2010. Investigation of wall shear stress related factors in realistic carotid bifurcation geometries and different flow conditions. Scientia Iranica. 17(5 B):358–366.
  • Javadzadegan A, Fulker D, Barber T. 2017. Recirculation zone length in renal artery is affected by flow spirality and renal-to-aorta flow ratio. Comput Methods Biomech Biomed Engin. 20(9):980–990.
  • Johnston BM, Johnston PR, Corney S, Kilpatrick D. 2004. Non-Newtonian blood flow in human right coronary arteries : steady state simulations. J Biomech. 37(5):709–720.
  • Johnston BM, Johnston PR, Corney S, Kilpatrick D. 2006. Non-Newtonian blood flow in human right coronary arteries: transient simulations. J Biomech. 39(6):1116–1128.
  • Jozwik K, Obidowski D. 2010. Numerical simulations of the blood flow through vertebral arteries. J Biomech. 43(2):177–185.
  • Kadhim SK, Nasif MS, Al-Kayiem HH, Al-Waked R. 2018. Computational fluid dynamics simulation of blood flow profile and shear stresses in bileaflet mechanical heart valve by using monolithic approach. Simulation. 94(2):93–104.
  • Kamada H, Nakamura M, Ota H, Higuchi S, Takase K. 2022. Blood flow analysis with computational fluid dynamics and 4D-flow MRI for vascular diseases. J Cardiol. 80(5):386–396.
  • Karimi S, Dabagh M, Vasava P, Dadvar M, Dabir B, Jalali P. 2014a. Effect of rheological models on the hemodynamics within human aorta: CFD study on CT image-based geometry. J Non-Newtonian Fluid Mech. 207:42–52.
  • Karimi S, Dabagh M, Vasava P, Dadvar M, Dabir B, Jalali P. 2014b. Journal of Non-Newtonian Fluid Mechanics Effect of rheological models on the hemodynamics within human aorta : CFD study on CT image-based geometry. J Non-Newtonian Fluid Mech. 207:42–52.
  • Karvelas EG, Lampropoulos NK, Karakasidis TE, Sarris IE. 2022. Blood flow and diameter effect in the navigation process of magnetic nanocarriers inside the carotid artery. Comput Method Programs Biomed. 221(106916):106916.
  • Kenjereš S. 2016. On Recent Progress in Modelling and Simulations of Multi-scale Transfer of Mass, Momentum and Particles in Bio-medical Applications. Flow, Turbul Combus. 96(3):837–860.
  • Khalafvand SS, Ng EYK, Zhong L. 2011. CFD simulation of flow through heart: a perspective review. Comput Methods Biomech Biomed Eng. 14(1):113–132.
  • Kharboutly Z, Fenech M, Treutenaere JM, Claude I, Legallais C. 2005. CFD modeling of unsteady blood flow in a arteriovenous fistula reconstructed from angioscanner. Comput Methods Biomech Biomed Eng. 8(sup1):161–162.
  • Kim T, Cheer AY, Dwyer HA. 2004. A simulated dye method for flow visualization with a computational model for blood flow. J Biomech. 37(8):1125–1136.
  • Kim YH, Kim JE, Ito Y, Shih AM, Brott B, Anayiotos A. 2008. Hemodynamic analysis of a compliant femoral artery bifurcation model using a fluid structure interaction framework. Ann Biomed Eng. 36(11):1753–1763.
  • Kumar S, Deoghare AB. 2018. Modelling of Human Abdominal Artery for Blood flow Analysis. Materials Today: Proceed. 5(5):12877–12885.
  • Kumar S, Rai SK, Kumar BVR, Shankar O. 2022. The pulsatile 3D-Hemodynamics in a doubly afflicted human descending abdominal artery with iliac branching. Comp Meth Biomech Biomed Eng. 0(0):1–20.
  • Kung EO, Les AS, Figueroa CA, Medina F, Arcaute K, Wicker RB, McConnell MV, Taylor CA. 2011. In vitro validation of finite element analysis of blood flow in deformable models. Ann Biomed Eng. 39(7):1947–1960.
  • Les AS, Shadden SC, Figueroa CA, Park JM, Tedesco MM, Herfkens RJ, Dalman RL, Taylor CA. 2010. Quantification of hemodynamics in abdominal aortic aneurysms during rest and exercise using magnetic resonance imaging and computational fluid dynamics. Ann Biomed Eng. 38(4):1288–1313.
  • Linge F, Hye MA, Paul MC. 2014. Pulsatile spiral blood flow through arterial stenosis. Comput Methods Biomech Biomed Engin. 17(15):1727–1737.
  • Mahé G, Kaladji A, Le FA, Jaquinandi V, De RS. 2015. Internal iliac artery stenosis: diagnosis and how to manage it in 2015. Frontiers in Cardiovascular Medicine. 2:1–9.
  • Mekheimer KS, Abo-Elkhair RE, Abdelsalam SI, Ali KK, Moawad AMA. 2022. Biomedical simulations of nanoparticles drug delivery to blood hemodynamics in diseased organs: synovitis problem. Int Com Heat Mass Transfer. 130:105756.
  • Moosavi MH, Fatouraee N, Katoozian H, Pashaei A, Camara O, Frangi AF. 2014. Numerical simulation of blood flow in the left ventricle and aortic sinus using magnetic resonance imaging and computational fluid dynamics. Comput Methods Biomech Biomed Engin. 17(7):740–749.
  • Nader E, Skinner S, Romana M, Fort R, Lemonne N, Guillot N, Gauthier A, Antoine-Jonville S, Renoux C, Hardy-Dessources MD, et al. 2019. Blood rheology: key parameters, impact on blood flow, role in sickle cell disease and effects of exercise. Front Physiol. 10(Oct):1–14.
  • Nagargoje MS, Mishra DK, Gupta R. 2021. Pulsatile flow dynamics in symmetric and asymmetric bifurcating vessels. Phys Fluids. 33(7):071904.
  • Nguyen ND, Haque AK. 1990. Effect of hemodynamic factors on atherosclerosis in the abdominal aorta. Atherosclerosis. 84(1):33–39.
  • Pandey R, Kumar M, Majdoubi J, Rahimi-Gorji M, Srivastav VK. 2020a. A review study on blood in human coronary artery: numerical approach. Comput Methods Programs Biomed. 187:1–12.
  • Pandey R, Kumar M, Srivastav VK. 2020b. Numerical computation of blood hemodynamic through constricted human left coronary artery: pulsatile simulations. Comput Methods Programs Biomed. 197:0169–2607.
  • Patel S, Usmani AY, Muralidhar K. 2017. Effect of aorto-iliac bifurcation and iliac stenosis on flow dynamics in an abdominal aortic aneurysm. Fluid Dyn Res. 49(3):035513.
  • Perktold K, Resch M, Florian H. 1991. Pulsatile non-Newtonian flow characteristics in a three-dimensional human carotid bifurcation model. Trans ASME, J Biomech Eng. 113(4):464–475.
  • Philip NT, Patnaik BSV, Sudhir BJ. 2022. Hemodynamic simulation of abdominal aortic aneurysm on idealised models: investigation of stress parameters during disease progression. Comput Methods Programs Biomed. 213:1–13.
  • Rispoli VC, Nielsen JF, Nayak KS, Carvalho JLA. 2015. Computational fluid dynamics simulations of blood flow regularized by 3D phase contrast MRI. BioMedical Engineering OnLine. 14(110):1–23.
  • Ryou HS, Kim S, Kim SW, Cho SW. 2012. Construction of healthy arteries using computed tomography and virtual histology intravascular ultrasound. J Biomech. 45(9):1612–1618.
  • Schobeiri MT. 2010. Boundary layer theory. In Fluid Mechanics for Engineers: a Graduate Textbook. Berlin, Heidelberg: Springer Berlin Heidelberg; p. 357–421.
  • Seo T. 2013. Numerical simulations of blood flow in arterial bifurcation models. Korea-Australia Rheology Journal. 25(3):153–161.
  • Siauw WL, Ng EYK, Mazumdar J. 2000. Unsteady stenosis flow prediction: a comparative study of non-Newtonian models with operator splitting scheme. Med Eng Phys. 22(4):265–277.
  • Skalak R, Keller SR, Secomb TW. 1981. Mechanics of blood flow. J Biomech Eng. 103(2):102–115.
  • Slager CJ, Wentzel JJ, Gijsen FJH, Schuurbiers JCH, van der Wal AC, van der Steen AFW, Serruys PW. 2005. The role of shear stress in the generation of rupture-prone vulnerable plaques. Nat Clin Pract Cardiovasc Med. 2(8):401–407.
  • Sochi T. 2013. Non-Newtonian rheology in blood circulation. arXivLabs Cornell University. 1–26.
  • Soulis JV, Giannoglou GD, Chatzizisis YS, Seralidou KV, Parcharidis GE, Louridas GE. 2008. Non-Newtonian models for molecular viscosity and wall shear stress in a 3D reconstructed human left coronary artery. Med Eng Phy. 30(1):9–19.
  • Sridhar V, Ramesh K, Gnaneswara Reddy M, Azese MN, Abdelsalam SI. 2022. On the entropy optimization of hemodynamic peristaltic pumping of a nanofluid with geometry effects. Waves Rand Compl Media. 0(4):2–17.
  • Taylor CA, Figueroa CA. 2009. Patient-specific modeling of cardiovascular mechanics. Annu Rev Biomed Eng. 11:109–134.
  • Thomas B, Sumam KS. 2016. Blood flow in human arterial system – a review. Procedia Technology. 24:339–346.
  • Vasava P, Jalali P, Dabagh M, Kolari PJ. 2012. Finite element modelling of pulsatile blood flow in idealized model of human aortic arch: study of hypotension and hypertension. Comput Math Methods Med. 2014:1–14.
  • Vinoth R, Adhikari R, Kumar D. 2016. Computational simulation of blood flow in normal and diseased artery.  Review. 9(April):1–15.
  • Wong KKL, Dong J, Tu J. 2012. Numerical study of stenosed carotid bifurcation models based on wall shear stress distribution. 2012 2nd International Confernence on Biomedical Engineering and Technology. 34:40–44.
  • Wu J, Liu G, Huang W, Ghista DN, Wong KKL. 2015. Transient blood flow in elastic coronary arteries with varying degrees of stenosis and dilatations: CFD modelling and parametric study. Comput Methods Biomech Biomed Engin. 18(16):1835–1845.
  • Zhong L, Zhang JM, Su B, Tan RS, Allen JC, Kassab GS. 2018. Application of patient-specific computational fluid dynamics in coronary and intra-cardiac flow simulations: challenges and opportunities. Front Physiol. 9(Jun):1–17.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.