159
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Numerical simulation on mass transfer in the bone lacunar-canalicular system under different gravity fields

, , , &
Pages 478-488 | Received 06 Dec 2022, Accepted 13 Feb 2023, Published online: 13 Mar 2023

References

  • Busse B, Djonic D, Milovanovic P, Hahn M, Püschel K, Ritchie RO, Djuric M, Amling M. 2010. Decrease in the osteocyte lacunar density accompanied by hypermineralized lacunar occlusion reveals failure and delay of remodeling in aged human bone. Aging Cell. 9(6):1065–1075.
  • Cao Q, Zhang J, Liu H, Wu Q, Chen J, Chen GQ. 2014. The mechanism of anti-osteoporosis effects of 3-hydroxybutyrate and derivatives under simulated microgravity. Biomaterials. 35(28):8273–8283.
  • Carmeliet G, Bouillon R. 1999. The effect of microgravity on morphology and gene expression of osteoblasts in vitro. FASEB J. 13:S129–S134.
  • Cowin SC. 2002. Mechanosensation and fluid transport in living bone. J Musculoskel Neuron. 2(3):256–260.
  • Cowin SC, Cardoso L. 2015. Blood and interstitial flow in the hierarchical pore space architecture of bone tissue. J Biomech. 48(5):842–854.
  • Dodd JS, Raleigh JA, Gross TS. 1999. Osteocyte hypoxia: a novel mechanotransduction pathway. Am J Physiol. 277(3):C598–C602.
  • Granata C, Caruana NJ, Botella J, Jamnick NA, Huynh K, Kuang J, Janssen HA, Reljic B, Mellett NA, Laskowski A, et al. 2021. High-intensity training induces non-stoichiometric changes in the mitochondrial proteome of human skeletal muscle without reorganisation of respiratory chain content. Nat Commun. 12(1):7056.
  • Iandolo D, Strigini M, Guignandon A, Vico L. 2021. Osteocytes and weightlessness. Curr Osteoporos Rep. 19(6):626–636.
  • Ikawa T, Kawaguchi A, Okabe T, Ninomiya T, Nakamichi Y, Nakamura M, Uehara S, Nakamura H, Udagawa N, Takahashi N, et al. 2011. Hypergravity suppresses bone resorption in ovariectomized rats. Adv Space Res. 47(7):1214–1224.
  • Knothe TM, Knothe U. 2000. An ex vivo model to study transport processes and fluid flow in loaded bone. J Biomech. 33(2):247–254.
  • Knothe Tate ML, Niederer P, Knothe U. 1998. In vivo tracer transport through the lacunocanalicular system of rat bone in an environment devoid of mechanical loading. Bone (New York, N.Y). 22(2):107–117.
  • Kufahl RH, Saha S. 1990. A theoretical model for stress-generated fluid flow in the canaliculi-lacunae network in bone tissue. J Biomech. 23(2):171–180.
  • Kumar R, Khana S, Tiwari AK, Tripathi D, Sharma NN. 2020. Estimation of loading-driven fluid-flow pattern in lacunar-canalicular space using fluid structure interaction. J Phys Conf Ser. 1504(1):12006.
  • Kumar R, Tiwari AK, Tripathi D, Mishra A. 2022. Electromagnetic field induced alterations in fluid flow through lacuno-canalicular system of bone. Int J Mech Sci. 217:107036.
  • Kumar R, Tiwari AK, Tripathi D, Sharma NN. 2020. Signalling molecule transport analysis in lacunar-canalicular system. Biomech Model Mechanobiol. 19(5):1879–1896.
  • Kumar R, Tiwari AK, Tripathi D, Shrivas NV, Nizam F. 2019. Canalicular fluid flow induced by loading waveforms: a comparative analysis. J Theor Biol. 471:59–73.
  • Lai X, Chung R, Li Y, Liu XS, Wang L. 2021. Lactation alters fluid flow and solute transport in maternal skeleton: a multiscale modeling study on the effects of microstructural changes and loading frequency. Bone. 151:116033.
  • Li J, Sun M, Song G, Zhang C, Li R, Zhang X, Huang K, Liu Y. 2017. The mechanical and biological responses of MC3T3-E1 cells under hypergravity (in Chinese). J Med Biomech. 32(02):122–129.
  • Liu C, Gao X, Li Y, Sun W, Xu Y, Tan Y, Du R, Zhong G, Zhao D, Liu Z, et al. 2022. The mechanosensitive lncRNA Neat1 promotes osteoblast function through paraspeckle-dependent Smurf1 mRNA retention. Bone Res. 10(1):18.
  • Liu H, Zhao S, Zhang H, Huang S, Peng W, Zhang C, Wang W. 2020. Research on solute transport behaviors in the lacunar-canalicular system using numerical simulation in microgravity. Comput Biol Med. 119:103700.
  • Liu H, Zhao C, Zhang H, Wang W, Liu Q. 2022. Simulation study on the effect of resistance exercise on the hydrodynamic microenvironment of osteocytes in microgravity. Comput Method Biomech. 25(15):1757–1766.
  • Loehr JA, Guilliams ME, Petersen N, Hirsch N, Kawashima S, Ohshima H. 2015. Physical training for long-duration spaceflight. Aerosp Med Hum Perf. 86(12):14–23.
  • Long M. 2014. How to stimulate a space microgravity environment or effect on earth from the viewpoint of responses of space cell growth to microgravity. Chin Sci Bull. 59(20):2004–2015.
  • Ma YL, Dai RC, Sheng ZF, Jin Y, Zhang YH, Fang LN, Fan HJ, Liao EY. 2008. Quantitative associations between osteocyte density and biomechanics, microcrack and microstructure in OVX rats vertebral trabeculae. J Biomech. 41(6):1324–1332.
  • Ma A, Huang X. 2008. Development of manned space environmental simulation technology (in Chinese). Space Med Med Eng. 21(03):224–232.
  • Markina EA, Andrianova IV, Shtemberg AS, Buravkova LB. 2018. Effect of 30-day hindlimb unloading and hypergravity on bone marrow stromal progenitors in C57Bl/6N mice. Bull Exp Biol Med. + 166(1):130–134.
  • Mary A. 2011. Identifying effective countermeasures to bone loss experienced during spaceflight. Aviat Sp Environ Med. 82(8):829–830.
  • Ma Y, Yuan Y, Xie L, Li Y, Wan Y, Shi Z. 2003. Effects of simulated weightlessness and mechanical loading on bone interstitial fluid flow in rats (in Chinese). Sp Med Med Eng. (04):257–259.
  • Mertiya AS, Tiwari AK, Mishra A, Main RP, Tripathi D, Tiwari A. 2022. Computational modeling for osteogenic potential assessment of physical exercises based on loading-induced mechanobiological environments in cortical bone remodeling. Biomech Model Mech. 22(1):281–295.
  • Morabito C, Guarnieri S, Cucina A, Bizzarri M, Mariggiò MA. 2020. Antioxidant strategy to prevent simulated microgravity-induced effects on bone osteoblasts. IJMS. 21(10):3638.
  • Noble B, Reeve J. 2000. Osteocyte function, osteocyte death and bone fracture resistance. Mol Cell Endocrinol. 159(1-2):7–13.
  • Pfenniger A, Obrist D, Stahel A, Koch VM, Vogel R. 2013. Energy harvesting through arterial wall deformation: design considerations for a magneto-hydrodynamic generator. Med Biol Eng Comput. 51(7):741–755.
  • Pressler A, Jähnig A, Halle M, Haller B. 2018. Blood pressure response to maximal dynamic exercise testing in an athletic population. J Hypertens. 36(9):1803–1809.
  • Price C, Zhou X, Li W, Wang L. 2011. Real-time measurement of solute transport within the lacunar-canalicular system of mechanically loaded bone: direct evidence for load-induced fluid flow. J Bone Miner Res. 26(2):277–285.
  • Rolvien T, Milovanovic P, Schmidt FN, Kroge S, Wölfel EM, Krause M, Wulff B, Püschel K, Ritchie RO, Amling M, et al. 2020. Long‐Term immobilization in elderly females causes a specific pattern of cortical bone and osteocyte deterioration different from postmenopausal osteoporosis. J Bone Miner Res. 35(7):1343–1351.
  • Stavnichuk M, Mikolajewicz N, Corlett T, Morris M, Komarova SV. 2020. A systematic review and meta-analysis of bone loss in space travelers. NPJ Microgravity. 6:13.
  • Wang L. 2018. Solute transport in the bone lacunar-canalicular system (LCS). Curr Osteoporos Rep. 16(1):32–41.
  • Wang H, Gao L, Chen X, Zhang C. 2022. Study on mass transfer in the bone lacunar-canalicular system under different gravity fields. J Bone Miner Metab. 40(6):940–950.
  • Wang H, Liu H, Wang X, Zhang C. 2021. The lack of mass transfer in bone lacunar-canalicular system may be the decisive factor of osteoporosis under microgravity. Life Sci Space Res (Amst). 31:80–84.
  • Wang H, Wang J, Li K, Gao L, Wang A, Wei S, Lyu L, Zhang C. 2023. The effect of different gravity fields on mass transfer in the rat bone lacunar-canalicular system. Med Novel Technol Dev. 17:100208.
  • Wu X, Li C, Chen K, Sun Y, Yu W, Zhang M, Wang Y, Qin Y, Chen W. 2020. Multi-scale mechanotransduction of the poroelastic signals from osteon to osteocyte in bone tissue. Acta Mech Sin. 36(4):964–980.
  • Wu X, Wang N, Cen H, Wang Z, Yu W, Chen K, Xue Y, Wang Y, Guo Y, Chen W. 2017. Effect of artery pulse on the osteonal interstitial fluid flow behavior. J Biomed Eng. 34(05):695–701.
  • Wu X, Yu W, Wang Z, Wang N, Cen H, Wang Y, Chen W. 2016. A canalicular fluid flow model associated with its fluid flow rate and fluid shear stress (in Chinese). CJTAM. 48(05):1208–1216.
  • Yang X, Sun L, Fan Y. 2011. Review of mechano-biological research on osteocytes under different gravity (in Chinese). Sp Med Med Eng. 24(06):398–402.
  • Zhang X. 2018. Advances in mechanical biology of bone tissue damage adaptation and reconstruction in extreme mechanical environment (in Chinese). J Med Biomech. 33(S1):74–79.
  • Zhang H, Liu H, Zhang C, Liu Z, Wang W. 2022. Multi-Scale mechanical behavior analysis on fluid–solid coupling for osteons in various gravitational fields. J Mech Med Biol. 22(01):2150071
  • Zhang X, Wang Q, Wan Z, Li J, Liu L, Zhang X. 2016. CKIP-1 knockout offsets osteoporosis induced by simulated microgravity. Prog Biophys Mol Biol. 122(2):140–148.
  • Zhao S, Liu H, Li Y, Song Y, Wang W, Zhang C. 2020. Numerical analysis of the flow field in the lacunar-canalicular system under different magnitudes of gravity. Med Biol Eng Comput. 58(3):509–518.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.