237
Views
0
CrossRef citations to date
0
Altmetric
RESEARCH ARTICLE

Porous structure design and properties of dental implants

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 717-726 | Received 08 Feb 2023, Accepted 02 Apr 2023, Published online: 13 Apr 2023

References

  • Adachi T, Osako Y, Tanaka M, Hojo M, Hollister SJ. 2006. Framework for optimal design of porous scaffold microstructure by computational simulation of bone regeneration. Biomaterials. 27(21):3964–3972.
  • An YH, Draughn RA. 1999. Mechanical testing of bone and the bone–implant interface. Boca Raton, FL: CRC Press; 624pp.
  • Ashman RB, Cowin SC, Buskirk WC, Rice JC. 1984. A Continuous wave technique for the measurement of the elastic properties of cortical bone. J Biomech. 17(5):349–361.
  • Bael SV, Chai YC, Truscello S, Moesen M, Kerckhofs G, Oosterwyck HV, Kruth JP, Schrooten J. 2012. The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds. Acta Biomater. 8(7):2824–2834.
  • Bidan CM, Kommareddy KP, Rumpler M, Kollmannsberger P, Fratzl P, Dunlop WC. 2013. Geometry as a factor for tissue growth: towards shape optimization of tissue engineering scaffolds. Adv Healthc Mater. 2(1):186–194.
  • Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE. 1997. Geometric control of cell life and death. Science. 276(5317):1425–1428.
  • Chen XY, Chen SL, Zhang MC. 2011. Three-dimensional finite element analysis of immediate loading of implants in different bone in the mandibular posterior region. J Chinese Stomatology. 46(4):233–236.
  • Chen ZY, Yan XC, Yin S, Liu LL, Liu X, Zhao GR, Ma WY, Qi WZ, Ren ZM, Liao HL, et al. 2020. Influence of the pore size and porosity of selective laser melted Ti6Al4V ELI porous scaffold on cell proliferation, osteogenesis and bone ingrowth. Mater Sci Eng C Mater Biol Appl. 106:110289.
  • Cheng XY, Li SJ, Murr LE, Zhang ZB, Hao YL, Yang R, Medina F, Wicker RB. 2012. Compression properties of open-cell Ti–6Al–4V foams with electron beam melting (EBM). J Mech Behav Biomed Mater. 16:153–162.
  • Cook SD, Klawitter JJ, Weinstein AM. 1981. The influence of implant elastic modulus on the stress distribution around LTI carbon and aluminum oxide dental implants. J Biomed Mater Res. 15(6):879–887.
  • Cui J, Zhu DM, Sun CF. 1989. Experimental study of human vertebral cancellous bone mechanics parameters. Beijing Biomed Eng. 8(3):143–148.
  • Demenko V, Linetskiy I, Nesvit K, Shevchenko A. 2011. Ultimate Masticatory Force as a Criterion in Implant Selection. J Dent Res. 90(10):1211–1215.
  • Fukuda A, Takemoto M, Saito T, Fujibayashi S, Neo M, Pattanayak DK, Matsushita T, Sasaki K, Nishida N, Kokubo T, et al. 2011. Osteoinduction of porous Ti implants with a channel structure fabricated by selective laser melting. Acta Biomater. 7(5):2327–2336.
  • Geng JP, Tan KB, Liu GR. 2001. Application of finite element analysis in implant dentistry: a review of the literature. J Prosthet Dent. 85(6):585–598.
  • Karageorgiou V, Kaplan D. 2005. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 26(27):5474–5491.
  • Li SJ, Xu QS, Wang Z, Hou WT, Hao YL, Yang R, Murr LE. 2014. Influence of cell shape on mechanical properties of Ti-6Al-4V meshes fabricated by electron beam melting method. Acta Biomater. 10(10):4537–4547.
  • Lv YP, Zhu RF, Ma QS, Li ST, Li MS, Li TQ. 2000. Advances in the study of medical titanium and titanium alloy implant materials. J Chinese Oral Implantol. 01:43–49.
  • Marin E, Fusi S, Pressacco M, Paussa L, Fedrizzi L. 2010. Characterization of cellular solids in Ti6Al4V for orthopaedic implant applications: trabecular titanium. J Mech Behav Biomed Mater. 3(5):373–381.
  • Michailidis N, Stergioudi F, Viglaki K, Chatzinikolaidou M. 2014. Production of novel ceramic porous surfaces tailored for bone tissue engineering. CIRP Annals-Manufacturing Tech. 63(1):557–560.
  • Mohammad AC, Nayem H, Abdus S, Jonaidul A, Sheikh MH, Ilias U, Masud R. 2022. Development of SiC–TiO2-Graphene neem extracted antimicrobial nano membrane for enhancement of multiphysical properties and future prospect in dental implant applications. Heliyon. 8:e10603.
  • Nayem H, Mohammad AI, Mohammad AC, Ashraful A. 2022. Advances of nanoparticles employment in dental implant applications. Appl Sur Sci Adv. 12:100341.
  • Nelson CM, Jean RP, Tan JL, Liu WF, Sniadecki NJ, Spector AA, Chen CS. 2005. Emergent patterns of growth controlled by multicellular form and mechanics. Proc. Natl Acad. Sci. USA. 102:11 594–11 599.
  • Nie L, Zhan Y, Hu T, Chen X, Wang C. 2014. β-Type Zr-Nb-Ti biomedical materials with high plasticity and low modulus for hard tissue replacements. J Mech Behav Biomed Mater. 29:1–6.
  • Oosterwyck HV, Duyck J, Vander SJ, Vander PG, De CM, Lievens S, Puers R, Naert I. 1998. The influence of bone mechanical properties and implant fixation upon bone loading around oral implants. Clin Oral Implants Res. 9(6):407–418.
  • Ouyang PR, Dong H, He XJ, Cai X, Wang YB, Li JL, Li HP, Jin ZG. 2019. Hydromechanical mechanism behind the effect of pore size of porous titanium scaffolds on osteoblast response and bone ingrowth. Mater Design. 183:108151.
  • Rumpler M, Woesz A, Dunlop JWC, Dongen JT, Fratzl P. 2008. The effect of geometry on three-dimensional tissue growth. J R Soc Interface. 5(27):1173–1180.
  • Ryan G, Pandit A, Apatsidis DP. 2006. Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials. 27(13):2651–2670.
  • Seker E, Ulusoy M, Ozan O, Doğan DÖ, Seker BK. 2014. Biomechanical effects of different fixed partial denture designs planned on bicortically anchored short, graft-supported long, or 45-degree-inclined long implants in the posterior maxilla: a three-dimensional finite element analysis. Int J Oral Maxillofac Implants. 29(1):e1-9–e9.
  • Steigenga JT, Al-Shammari KF, Nociti FH, Misch CE, Wang HL. 2003. Dental implant design and itsrelationship to long-term implant success. Implant Dent. 12(4):306–317.
  • Tanino F, Hayakawa I, Hirano S, Minakuchi S. 2007. Finite element analysis of stress-breaking attachments on maxillary implant-retained overdentures. Int J Prosthodontics. 20(2):193.
  • Woesz A, Stampfl J, Fratzl P. 2004. Cellular solids beyond the apparent densitan experimental assessment of mechanical properties. Adv Eng Mater. 6(3):134–138.
  • Zhang JG, Huang DY, Hu FL, Chen C, Song L, Zhou Q, Zhang EG. 2021. Research on mechanical properties of Ti6Al4V alloy with porous structure based on selective laser melting. Rare Metal Mat Eng. 51(10):3619–3625.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.