158
Views
2
CrossRef citations to date
0
Altmetric
RESEARCH ARTICLE

Estimation of non-alcoholic steatohepatitis (NASH) disease using clinical information based on the optimal combination of intelligent algorithms for feature selection and classification

&
Pages 964-979 | Received 24 Aug 2022, Accepted 12 May 2023, Published online: 31 May 2023

References

  • Abdi H. 2010. Holm’s sequential Bonferroni procedure. Encyclopedia of Research Design. 1(8):1–8.
  • Alkhouri N. 2020. Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): prevalence, therapeutic innovations, and stumbling blocks for clinical development. Expert Opin Investig Drugs. 29(2):115–116.
  • Aravind A, Bahirvani AG, Quiambao R, Gonzalo T. 2020. Machine learning technology for evaluation of liver fibrosis, inflammation activity and steatosis (LIVERFAStTM). JILSA. 12(2):31–49.
  • Bedogni G, Miglioli L, Masutti F, Tiribelli C, Marchesini G, Bellentani S. 2005. Prevalence of and risk factors for nonalcoholic fatty liver disease: the Dionysos nutrition and liver study. Hepatology. 42(1):44–52.
  • Canbay A, Kälsch J, Neumann U, Rau M, Hohenester S, Baba HA, Rust C, Geier A, Heider D, Sowa JP. 2019. Non-invasive assessment of NAFLD as systemic disease—a machine learning perspective. PLoS One. 14(3):e0214436.
  • Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M, Harrison SA, Brunt EM, Sanyal AJ. 2018. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology. 67(1):328–357.
  • Destrempes F, Gesnik M, Chayer B, Roy-Cardinal MH, Olivié D, Giard JM, Sebastiani G, Nguyen BN, Cloutier G, Tang A. 2022. Quantitative ultrasound, elastography, and machine learning for assessment of steatosis, inflammation, and fibrosis in chronic liver disease. PLoS One. 17(1):e0262291.
  • Ding C, Peng H. 2005. Minimum redundancy feature selection from microarray gene expression data. J Bioinform Comput Biol. 3(2):185–205.
  • Duan Z, Song P, Yang C, Deng L, Jiang Y, Deng F, Jiang X, Chen Y, Yang G, Ma Y, et al. 2022. The impact of hyperglycaemic crisis episodes on long-term outcomes for inpatients presenting with acute organ injury: a prospective, multicentre follow-up study. Front Endocrinol. 13:1–11.
  • Dulai PS, Singh S, Patel J, Soni M, Prokop LJ, Younossi Z, Sebastiani G, Ekstedt M, Hagstrom H, Nasr P, et al. 2017. Increased risk of mortality by fibrosis stage in nonalcoholic fatty liver disease: systematic review and meta‐analysis. Hepatology. 65(5):1557–1565.,
  • Emu M, Kamal FB, Choudhury S, de Oliveira TEA. 2020. Assisting the non-invasive diagnosis of liver fibrosis stages using machine learning methods. In 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC); p. 5382–5387. IEEE.
  • Fan R, Wang J, Du J. 2018. Association between body mass index and fatty liver risk: a dose-response analysis. Sci Rep. 8(1):1–7.
  • Feng J, Xu H, Mannor S, Yan S. 2014. Robust logistic regression and classification. Adv Neural Information Processing Systems. 27:253–262.
  • Fialoke S, Malarstig A, Miller MR, Dumitriu A. 2018. Application of machine learning methods to predict non-alcoholic steatohepatitis (NASH) in non-alcoholic fatty liver (NAFL) patients. In AMIA Annual Symposium Proceedings; Vol. 2018, p. 430. American Medical Informatics Association.
  • Foody GM. 2004. Supervised image classification by MLP and RBF neural networks with and without an exhaustively defined set of classes. Int J Remote Sens. 25(15):3091–3104.
  • Forlano R, Mullish BH, Giannakeas N, Maurice JB, Angkathunyakul N, Lloyd J, Tzallas AT, Tsipouras M, Yee M, Thursz MR, et al. 2020. High-throughput, machine learning–based quantification of steatosis, inflammation, ballooning, and fibrosis in biopsies from patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 18(9):2081–2090.e9.
  • García-Carretero R, Holgado-Cuadrado R, Barquero-Pérez Ó. 2021. Assessment of classification models and relevant features on nonalcoholic steatohepatitis using random forest. Entropy. 23(6):763.
  • Ghandian S, Thapa R, Garikipati A, Barnes G, Green‐Saxena A, Calvert J, Mao Q, Das R. 2022. Machine learning to predict progression of non‐alcoholic fatty liver to non‐alcoholic steatohepatitis or fibrosis. JGH Open. 6(3):196–204.
  • Graffy PM, Sandfort V, Summers RM, Pickhardt PJ. 2019. Automated liver fat quantification at nonenhanced abdominal CT for population-based steatosis assessment. Radiology. 293(2):334–342.
  • Hectors SJ, Kennedy P, Huang KH, Stocker D, Carbonell G, Greenspan H, Friedman S, Taouli B. 2021. Fully automated prediction of liver fibrosis using deep learning analysis of gadoxetic acid–enhanced MRI. Eur Radiol. 31(6):3805–3814.
  • Heinemann F, Birk G, Stierstorfer B. 2019. Deep learning enables pathologist-like scoring of NASH models. Sci Rep. 9(1):1–10.
  • Jaccard P. 1901. Distribution de la flore alpine dans le bassin des Dranses et dans quelques régions voisines. Bull Soc Vaudoise Sci Nat. 37:241–272.
  • Jun BG, Cheon GJ. 2019. The utility of ezetimibe therapy in nonalcoholic fatty liver disease. Korean J Intern Med. 34(2):284–285.
  • Karim MR, Beyan O, Zappa A, Costa IG, Rebholz-Schuhmann D, Cochez M, Decker S. 2021. Jan Deep learning-based clustering approaches for bioinformatics. Brief Bioinform. 22(1):393–415.
  • Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, Ferrell LD, Liu Y-C, Torbenson MS, Unalp-Arida A, et al. 2005. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 41(6):1313–1321.
  • Konishi K, Miyake T, Furukawa S, Senba H, Kanzaki S, Nakaguchi H, Yukimoto A, Nakamura Y, Watanabe T, Koizumi Y, et al. 2020. Advanced fibrosis of non-alcoholic steatohepatitis affects the significance of lipoprotein (a) as a cardiovascular risk factor. Atherosclerosis. 299:32–37.
  • Ma H, Xu CF, Shen Z, Yu CH, Li YM. 2018. Application of machine learning techniques for clinical predictive modeling: a cross-sectional study on nonalcoholic fatty liver disease in China. Biomed Res Int. 2018:1–9.
  • Mahabub A. 2019. A robust voting approach for diabetes prediction using traditional machine learning techniques. SN Appl Sci. 1(12):1–12.
  • Maniruzzaman M, Rahman M, Al-MehediHasan M, Suri HS, Abedin M, El-Baz A, Suri JS. 2018. Accurate diabetes risk stratification using machine learning: role of missing value and outliers. J Med Syst. 42(5):1–17.
  • Marcano-Cedeño A, Quintanilla-Domínguez J, Cortina-Januchs MG, Andina D. 2010. Feature selection using sequential forward selection and classification applying artificial metaplasticity neural network. In IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society; p. 2845–2850. IEEE.
  • McGill W. 1954. Multivariate information transmission. Trans IRE Prof Group Inf Theory. 4(4):93–111.
  • McHugh ML. 2012. Interrater reliability: the kappa statistic. Biochem Med. 22(3):276–282.
  • McNemar Q. 1947. Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika. 12(2):153–157.
  • Newsome PN, Sasso M, Deeks JJ, Paredes A, Boursier J, Chan W-K, Yilmaz Y, Czernichow S, Zheng M-H, Wong VW-S, et al. 2020. FibroScan-AST (FAST) score for the non-invasive identification of patients with non-alcoholic steatohepatitis with significant activity and fibrosis: a prospective derivation and global validation study. Lancet Gastroenterol Hepatol. 5(4):362–373.
  • Okanoue T, Shima T, Mitsumoto Y, Umemura A, Yamaguchi K, Itoh Y, Yoneda M, Nakajima A, Mizukoshi E, Kaneko S, et al. 2021. Artificial intelligence/neural network system for the screening of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatol Res. 51(5):554–569.
  • Paik JM, Golabi P, Younossi Y, Mishra A, Younossi ZM. 2020. Changes in the global burden of chronic liver diseases from 2012 to 2017: the growing impact of NAFLD. Hepatology. 72(5):1605–1616.
  • Park CH, Park H. 2008. A comparison of generalized linear discriminant analysis algorithms. Pattern Recognit. 41(3):1083–1097.
  • Patle A, Chouhan DS. 2013. SVM kernel functions for classification. In 2013 International Conference on Advances in Technology and Engineering (ICATE); pp. 1–9. IEEE.
  • Priyam A, Abhijeeta GR, Rathee A, Srivastava S. 2013. Comparative analysis of decision tree classification algorithms. Int J Curr Engin Technol. 3(2):334–337.
  • Radovic M, Ghalwash M, Filipovic N, Obradovic Z. 2017. Minimum redundancy maximum relevance feature selection approach for temporal gene expression data. BMC Bioinf. 18(1):1–14.
  • Ray A, Chaudhuri AK. 2021. Smart healthcare disease diagnosis and patient management: innovation, improvement and skill development. Machine Learning with Appl. 3:100011.
  • Razzak MI, Naz S, Zaib A. 2018. Deep learning for medical image processing: overview, challenges and the future. Classification in BioApps:323–350.
  • Rückert IM, Heier M, Rathmann W, Baumeister SE, Döring A, Meisinger C. 2011. Association between markers of fatty liver disease and impaired glucose regulation in men and women from the general population: the KORA-F4-study. PLoS One. 6(8):e22932.
  • Shaik AB, Srinivasan S. 2019. A brief survey on random forest ensembles in classification model. In International Conference on Innovative Computing and Communications; p. 253–260. Singapore: Springer.
  • Styczynski G, Milewska A, Marczewska M, Sobieraj P, Sobczynska M, Dabrowski M, Kuch-Wocial A, Szmigielski C. 2016. Echocardiographic correlates of abnormal liver tests in patients with exacerbation of chronic heart failure. J Am Soc Echocardiogr. 29(2):132–139.
  • Suresha PB, Wang Y, Xiao C, Glass L, Yuan Y, Clifford GD. 2021. A deep learning approach for classifying nonalcoholic steatohepatitis patients from nonalcoholic fatty liver disease patients using electronic medical records. In Explainable AI in healthcare and medicine. Cham: Springer; p. 107–113.
  • Tahernezhad-Javazm F, Azimirad V, Shoaran M. 2018. A review and experimental study on the application of classifiers and evolutionary algorithms in EEG-based brain–machine interface systems. J Neural Eng. 15(2):021007.
  • Taunk K, De S, Verma S, Swetapadma A. 2019. A brief review of nearest neighbor algorithm for learning and classification. In 2019 International Conference on Intelligent Computing and Control Systems (ICCS); pp. 1255–1260. IEEE.
  • Tharwat A. 2021. Classification assessment methods. ACI. 17(1):168–192.
  • Toledo FG, Sniderman AD, Kelley DE. 2006. Influence of hepatic steatosis (fatty liver) on severity and composition of dyslipidemia in type 2 diabetes. Diabetes Care. 29(8):1845–1850.
  • Vergara JR, Estévez PA. 2014. A review of feature selection methods based on mutual information. Neural Comput & Appl. 24(1):175–186.
  • Wu CC, Yeh WC, Hsu WD, Islam MM, Nguyen PAA, Poly TN, Wang YC, Yang HC, Li YCJ. 2019. Prediction of fatty liver disease using machine learning algorithms. Comput Methods Programs Biomed. 170:23–29.
  • Xu H, Caramanis C, Mannor S. 2012. Sparse algorithms are not stable: a no-free-lunch theorem. IEEE Trans Pattern Anal Mach Intell. 34(1):187–193.
  • Ying C, Qi-Guang M, Jia-Chen L, Lin G. 2013. Advance and prospects of AdaBoost algorithm. Acta Autom Sin. 39(6):745–758.
  • Yoneda M, Honda Y, Nogami A, Imajo K, Nakajima A. 2020. Advances in ultrasound elastography for nonalcoholic fatty liver disease. J Med Ultrason (2001). 47(4):521–533.
  • Zheng W, Chilazi M, Park J, Sathiyakumar V, Donato LJ, Meeusen JW, Lazo M, Guallar E, Kulkarni KR, Jaffe AS, et al. 2022. Assessing the accuracy of estimated lipoprotein (a) cholesterol and lipoprotein (a)‐free low‐density lipoprotein cholesterol. J Am Heart Assoc. 11(2):e023136.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.