345
Views
4
CrossRef citations to date
0
Altmetric
RESEARCH ARTICLE

Effects of cardiac growth on electrical dyssynchrony in the single ventricle patient

, , , , &
Pages 1011-1027 | Received 26 Oct 2022, Accepted 04 May 2023, Published online: 14 Jun 2023

References

  • Abboud S, Berenfeld O, Sadeh D. 1991. Simulation of high-resolution qrs complex using a ventricular model with a fractal conduction system. Effects of ischemia on high-frequency QRS potentials. Circ Res. 68(6):1751–1760.
  • Abd El Rahman M, Abdul-Khaliq H, Vogel M, Alexi-Meskishvili V, Gutberlet M, Lange P. 2000. Relation between right ventricular enlargement, qrs duration, and right ventricular function in patients with tetralogy of fallot and pulmonary regurgitation after surgical repair. Heart. 84(4):416–420.
  • Aliev RR, Panfilov AV. 1996. A simple two-variable model of cardiac excitation. Chaos Soliton Fract. 7(3):293–301.
  • Barber F, Langfield P, Lozano M, García-Fernández I, Duchateau J, Hocini M, Haïssaguerre M, Vigmond E, Sebastian R. 2021. Estimation of personalized minimal purkinje systems from human electro-anatomical maps. IEEE Trans Med Imaging. 40(8):2182–2194.
  • Bayer JD, Blake RC, Plank G, Trayanova NA. 2012. A novel rule-based algorithm for assigning myocardial fiber orientation to computational heart models. Ann Biomed Eng. 40(10):2243–2254.
  • Beeler GW, Reuter H. 1977. Reconstruction of the action potential of ventricular myocardial fibres. J Physiol. 268(1):177–210.
  • Biktasheva IV, Anderson RA, Holden AV, Pervolaraki E, Wen FC. 2018. Cardiac re-entry dynamics and self-termination in dt-MRI based model of human fetal heart. Front Phys. 6:15.
  • Bishop MJ, Hales P, Plank G, Gavaghan DJ, Scheider J, Grau V. 2009. Comparison of rule-based and dtmri-derived fibre architecture in a whole rat ventricular computational model. In: Functional Imaging and Modeling of the Heart: 5th International Conference, FIMH 2009; June 3–5, 2009; Nice, France: Springer. p. 87–96.
  • Cartoski MJ, Nikolov PP, Prakosa A, Boyle PM, Spevak PJ, Trayanova NA. 2019. Computational identification of ventricular arrhythmia risk in pediatric myocarditis. Pediatr Cardiol. 40(4):857–864.
  • Chubb H, Bulic A, Mah D, Moore JP, Janousek J, Fumanelli J, Asaki SY, Pflaumer A, Hill AC, Escudero C, et al. 2022. Impact and modifiers of ventricular pacing in patients with single ventricle circulation. J Am Coll Cardiol. 80(9):902–914.
  • Colli Franzone P, Guerri L, Rovida S. 1990. Wavefront propagation in an activation model of the anisotropic cardiac tissue: asymptotic analysis and numerical simulations. J Math Biol. 28(2):121–176.
  • Corral-Acero J, Margara F, Marciniak M, Rodero C, Loncaric F, Feng Y, Gilbert A, Fernandes JF, Bukhari HA, Wajdan A, et al. 2020. The ‘digital twin’to enable the vision of precision cardiology. Eur Heart J. 41(48):4556–4564.
  • Costabal FS, Hurtado DE, Kuhl E. 2016. Generating purkinje networks in the human heart. J Biomech. 49(12):2455–2465.
  • Dassault Systèmes Simulia Corp. 2022. Abaqus analysis user’s guide.
  • Del Bianco F, Franzone PC, Scacchi S, Fassina L. 2018. Electromechanical effects of concentric hypertrophy on the left ventricle: a simulation study. Comput Biol Med. 99:236–256.
  • Dewan S, Krishnamurthy A, Kole D, Conca G, Kerckhoffs R, Puchalski MD, Omens JH, Sun H, Nigam V, McCulloch AD. 2017. Model of human fetal growth in hypoplastic left heart syndrome: reduced ventricular growth due to decreased ventricular filling and altered shape. Front Pediatr. 5:25.
  • Durrer D, Van Dam RT, Freud G, Janse M, Meijler F, Arzbaecher R. 1970. Total excitation of the isolated human heart. Circulation. 41(6):899–912.
  • Emani SM, McElhinney DB, Tworetzky W, Myers PO, Schroeder B, Zurakowski D, Pigula FA, Marx GR, Lock JE, del Nido PJ. 2012. Staged left ventricular recruitment after single-ventricle palliation in patients with borderline left heart hypoplasia. J Am Coll Cardiol. 60(19):1966–1974.
  • Files MD, Arya B. 2018. Pathophysiology, adaptation, and imaging of the right ventricle in fontan circulation. Am J Physiol Heart Circ Physiol. 315(6):H1779–H1788.
  • FitzHugh R. 1961. Impulses and physiological states in theoretical models of nerve membrane. Biophys J. 1(6):445–466.
  • Fontan F, Baudet E. 1971. Surgical repair of tricuspid atresia. Thorax. 26(3):240–248.
  • Genet M, Lee LC, Baillargeon B, Guccione JM, Kuhl E. 2016. Modeling pathologies of diastolic and systolic heart failure. Ann Biomed Eng. 44(1):112–127.
  • Geuzaine C, Remacle JF. 2009. Gmsh: a 3-D finite element mesh generator with built-in pre-and post-processing facilities. Int J Numer Meth Engng. 79(11):1309–1331.
  • Gillette K, Prassl A, Neic A, Plank G, Bayer J, Vigmond E. 2018. Automatic generation of bi-ventricular models of cardiac electrophysiology for patient specific personalization using non-invasive recordings. Vol. 45. In 2018 computing in cardiology conference (CinC). IEEE; p. 1–4.
  • Gobergs R, Salputra E, Lubaua I. 2016. Hypoplastic left heart syndrome: a review. Acta Med Litu. 23(2):86–98.
  • Göktepe S, Abilez OJ, Kuhl E. 2010a. A generic approach towards finite growth with examples of athlete’s heart, cardiac dilation, and cardiac wall thickening. J Mech Phys Solids. 58(10):1661–1680.
  • Göktepe S, Abilez OJ, Parker KK, Kuhl E. 2010b. A multiscale model for eccentric and concentric cardiac growth through sarcomerogenesis. J Theor Biol. 265(3):433–442.
  • Göktepe S, Kuhl E. 2009. Computational modeling of cardiac electrophysiology: a novel finite element approach. Int J Numer Meth Engng. 79(2):156–178.
  • Graham EM, Scheurer MA, Saul J P, Bradley SM, Atz AM. 2007. QRS duration following the norwood procedure: blalock-taussig shunt versus right ventricle to pulmonary artery shunt. Pacing Clin Electrophysiol. 30(11):1336–1338.
  • Grattan M, Mertens L. 2016. Mechanics of the functionally univentricular heart—how little do we understand and why does it matter? Can J Cardiol. 32(8):1033.e11–1033–e18.
  • Gutgesell HP, Massaro TA. 1995. Management of hypoplastic left heart syndrome in a consortium of university hospitals. Am J Cardiol. 76(11):809–811.
  • Hayama Y, Shimizu S, Kawada T, Negishi J, Sakaguchi H, Miyazaki A, Ohuchi H, Yamada O, Kurosaki K, Sugimachi M. 2020. Impact of delayed ventricular wall area ratio on pathophysiology of mechanical dyssynchrony: implication from single-ventricle physiology and 0d modeling. J Physiol Sci. 70(1):1–13.
  • Hodgkin AL, Huxley AF. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 117(4):500–544.
  • Holzapfel GA, Ogden RW. 2009. Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos Trans A Math Phys Eng Sci. 367(1902):3445–3475.
  • Joyce J, O'Leary ET, Mah DY, Harrild DM, Rhodes J. 2020. Cardiac resynchronization therapy improves the ventricular function of patients with fontan physiology. Am Heart J. 230:82–92.
  • Kamiyama A, Inoue F. 1971. Conduction delay from purkinje fiber to ventricular muscle studied with extracellular microelectrodes. Can J Physiol Pharmacol. 49(7):678–684.
  • Karikari Y, Abdulkarim M, Li Y, Loomba RS, Zimmerman F, Husayni T. 2020. The progress and significance of qrs duration by electrocardiography in hypoplastic left heart syndrome. Pediatr Cardiol. 41(1):141–148.
  • Khan S, Nadorlik H, Kertesz N, Nicholson L, Ro PS, Cua CL. 2015. QRS duration changes in patients with single ventricle physiology: birth to 10 years. Pacing Clin Electrophysiol. 38(10):1159–1165.
  • Klotz S, Hay I, Dickstein ML, Yi GH, Wang J, Maurer MS, Kass DA, Burkhoff D. 2006. Single-beat estimation of end-diastolic pressure-volume relationship: a novel method with potential for noninvasive application. Am J Physiol Heart Circ Physiol. 291(1):H403–H412.
  • Krishnamoorthi S, Sarkar M, Klug WS. 2013. Numerical quadrature and operator splitting in finite element methods for cardiac electrophysiology. Int J Numer Method Biomed Eng. 29(11):1243–1266.
  • Kroon W, Delhaas T, Arts T, Bovendeerd P. 2009. Computational modeling of volumetric soft tissue growth: application to the cardiac left ventricle. Biomech Model Mechanobiol. 8(4):301–309.
  • Lee AW, Costa CM, Strocchi M, Rinaldi CA, Niederer SA. 2018. Computational modeling for cardiac resynchronization therapy. J Cardiovasc Transl Res. 11(2):92–108.
  • Lin IE, Taber L. 1995. A model for stress-induced growth in the developing heart.
  • Lopez L, Cohen MS, Anderson RH, Redington AN, Nykanen DG, Penny DJ, Deanfield JE, Eidem BW. 2010. Unnatural history of the right ventricle in patients with congenitally malformed hearts. Cardiol Young. 20(S3):107–112.
  • Lopez-Perez A, Sebastian R, Ferrero JM. 2015. Three-dimensional cardiac computational modelling: methods, features and applications. BioMed Eng OnLine. 14(1):31.
  • Marsden AL, Feinstein JA. 2015. Computational modeling and engineering in pediatric and congenital heart disease. Curr Opin Pediatr. 27(5):587–596.
  • McEvoy E, Holzapfel GA, McGarry P. 2018. Compressibility and anisotropy of the ventricular myocardium: experimental analysis and microstructural modeling. J Biomech Eng. 140(8):081004.
  • Monaco MA, Liberman L, Starc TJ, Silver ES. 2015. Defining the electrocardiogram in the neonate with hypoplastic left heart syndrome. Pediatr Cardiol. 36(5):1014–1018.
  • Motonaga KS, Miyake CY, Punn R, Rosenthal DN, Dubin AM. 2012. Insights into dyssynchrony in hypoplastic left heart syndrome. Heart Rhythm. 9(12):2010–2015.
  • Niederer SA, Kerfoot E, Benson AP, Bernabeu MO, Bernus O, Bradley C, Cherry EM, Clayton R, Fenton FH, Garny A, et al. 2011. Verification of cardiac tissue electrophysiology simulators using an n-version benchmark. Philos Trans A Math Phys Eng Sci. 369(1954):4331–4351.
  • Niederer SA, Lumens J, Trayanova NA. 2019. Computational models in cardiology. Nat Rev Cardiol. 16(2):100–111.
  • Niestrawska JA, Augustin CM, Plank G. 2020. Computational modeling of cardiac growth and remodeling in pressure overloaded hearts–linking microstructure to organ phenotype. Acta Biomater. 106:34–53.
  • Noonan JA, Nadas AS. 1958. The hypoplastic left heart syndrome. Pediatr Clin North Am. 5(4):1029–1056.
  • O'Hara T, Virág L, Varró A, Rudy Y. 2011. Simulation of the undiseased human cardiac ventricular action potential: model formulation and experimental validation. PLoS Comput Biol. 7(5):e1002061.
  • Ohye RG, Schranz D, D'Udekem Y. 2016. Current therapy for hypoplastic left heart syndrome and related single ventricle lesions. Circulation. 134(17):1265–1279.
  • Pegolotti L, Dedè L, Quarteroni A. 2019. Isogeometric analysis of the electrophysiology in the human heart: numerical simulation of the bidomain equations on the atria. Comp Methods Appl Mech Eng. 343:52–73.
  • Peirlinck M, Beule MD, Segers P, Rebelo N. 2018. A modular inverse elastostatics approach to resolve the pressure-induced stress state for in vivo imaging based cardiovascular modeling. J Mech Behav Biomed Mater. 85:124–133.
  • Peirlinck M, Costabal FS, Kuhl E. 2021a. Sex differences in drug-induced arrhythmogenesis. Front Physiol. 12:1245.
  • Peirlinck M, Costabal FS, Sack KL, Choy JS, Kassab GS, Guccione JM, Beule MD, Segers P, Kuhl E. 2019a. Using machine learning to characterize heart failure across the scales. Biomech Model Mechanobiol. 18(6):1987–2001.
  • Peirlinck M, Costabal FS, Yao J, Guccione JM, Tripathy S, Wang Y, Ozturk D, Segars P, Morrison TM, Levine S, et al. 2021b. Precision medicine in human heart modeling: perspectives, challenges, and opportunities. Biomech Model Mechanobiol. 20(3):803–831.
  • Peirlinck M, Costabal FS, Yao J, Guccione JM, Tripathy S, Wang Y, Ozturk D, Segars P, Morrison TM, Levine S, et al. 2021c. Precision medicine in human heart modeling. Biomech Model Mechanobiol. 20(3):803–831.
  • Peirlinck M, Sack KL, De Backer P, Morais P, Segers P, Franz T, De Beule M. 2019b. Kinematic boundary conditions substantially impact in silico ventricular function. Int J Numer Method Biomed Eng. 35(1):e3151.
  • Peirlinck M, Yao J, Costabal FS, Kuhl E. 2022. How drugs modulate the performance of the human heart. Comput Mech. 69(6):1397–1411.
  • Ferencz C, Rubin JD, Mccarter RJ, Brenner JI, Neill CA, Perry LW, Hepner SI, Downing JW. 1985. Congenital heart disease: prevalence at livebirth: the Baltimore-Washington Infant Study. American journal of epidemiology. 121(1):31–36.
  • Pervolaraki E, Hodgson S, Holden AV, Benson AP. 2014. Towards computational modelling of the human foetal electrocardiogram: normal sinus rhythm and congenital heart block. Europace. 16(5):758–765.
  • Pezzuto S, Hake J, Sundnes J. 2016. Space-discretization error analysis and stabilization schemes for conduction velocity in cardiac electrophysiology. Int J Numer Meth Biomed Engng. 32(10):e02762.
  • Qu Z, Garfinkel A. 1999. An advanced algorithm for solving partial differential equation in cardiac conduction. IEEE Trans Biomed Eng. 46(9):1166–1168.
  • Ramasubramanian A, Nerurkar NL, Achtien KH, Filas BA, Voronov DA, Taber LA. 2008. On modeling morphogenesis of the looping heart following mechanical perturbations. J Biomech Eng. 130(6):061018.
  • Rathod RH, Prakash A, Kim YY, Germanakis IE, Powell AJ, Gauvreau K, Geva T. 2014. Cardiac magnetic resonance parameters predict transplantation-free survival in patients with fontan circulation. Circ. Cardiovas Imaging. 7(3):502–509.
  • Rodriguez EK, Hoger A, McCulloch AD. 1994. Stress-dependent finite growth in soft elastic tissues. J Biomech. 27(4):455–467.
  • Rohmer D, Sitek A, Gullberg GT. 2007. Reconstruction and visualization of fiber and laminar structure in the normal human heart from ex vivo diffusion tensor magnetic resonance imaging (DTMRI) data. Invest Radiol. 42(11):777–789.
  • Rosen MR, Legato MJ, Weiss RM. 1981. Developmental changes in impulse conduction in the canine heart. Am J Physiol. 240(4):H546–H554.
  • Rösner A, Khalapyan T, Dalen H, McElhinney DB, Friedberg MK, Lui GK. 2018. Classic-pattern dyssynchrony in adolescents and adults with a fontan circulation. J Am Soc Echocardiogr. 31(2):211–219.
  • Sahli Costabal F, Concha FA, Hurtado DE, Kuhl E. 2017. The importance of mechano-electrical feedback and inertia in cardiac electromechanics. Comput Methods Appl Mech Eng. 320:352–368.
  • Sahli Costabal F, Yao J, Kuhl E. 2018. Predicting the cardiac toxicity of drugs using a novel multiscale exposure–response simulator. Comput Methods Biomech Biomed Engin. 21(3):232–246.
  • Salman HE, Yalcin HC. 2021. Computational modeling of blood flow hemodynamics for biomechanical investigation of cardiac development and disease. JCDD. 8(2):14.
  • Schwarz EL, Kelly JM, Blum KM, Hor KN, Yates AR, Zbinden JC, Verma A, Lindsey SE, Ramachandra AB, Szafron JM, et al. 2021. Hemodynamic performance of tissue-engineered vascular grafts in fontan patients. NPJ Regener Med. 6(1):1–17.
  • Shade JK, Cartoski MJ, Nikolov P, Prakosa A, Doshi A, Binka E, Olivieri L, Boyle PM, Spevak PJ, Trayanova NA. 2020. Ventricular arrhythmia risk prediction in repaired tetralogy of fallot using personalized computational cardiac models. Heart Rhythm. 17(3):408–414.
  • Sharifi H, Mann CK, Rockward AL, Mehri M, Mojumder J, Lee LC, Campbell KS, Wenk JF. 2021. Multiscale simulations of left ventricular growth and remodeling. Biophys Rev. 13(5):729–746.
  • Sobh M, Freitag-Wolf S, Scheewe J, Kanngiesser LM, Uebing AS, Gabbert DD, Voges I. 2022. Serial right ventricular assessment in patients with hypoplastic left heart syndrome: a multiparametric cardiovascular magnetic resonance study. Eur J Cardiothorac Surg. 61(1):36–42.
  • Sommer G, Schriefl AJ, Andrä M, Sacherer M, Viertler C, Wolinski H, Holzapfel GA. 2015. Biomechanical properties and microstructure of human ventricular myocardium. Acta Biomater. 24:172–192.
  • St Pierre SR, Peirlinck M, Kuhl E. 2022. Sex matters: a comprehensive comparison of female and male hearts. Front Physiol. 13:831179.
  • Sughimoto K, Ueda T, Fujiwara T, Liu H. 2019. Impact of atrial fibrillation on hemodynamics of fontan circulation: fontan computational model study. Circulation. 140(Suppl_1):A12557–A12557.
  • Sundareswaran KS, Pekkan K, Dasi LP, Whitehead K, Sharma S, Kanter KR, Fogel MA, Yoganathan AP. 2008. The total cavopulmonary connection resistance: a significant impact on single ventricle hemodynamics at rest and exercise. Am J Physiol Heart Circ Physiol. 295(6):H2427–H2435.
  • Taber L, Chabert S. 2002. Theoretical and experimental study of growth and remodeling in the developing heart. Biomech Model Mechanobiol. 1(1):29–43.
  • Ten Tusscher K, Panfilov AV. 2008. Modelling of the ventricular conduction system. Prog Biophys Mol Biol. 96(1–3):152–170.
  • Ten Tusscher KH, Panfilov AV. 2006. Alternans and spiral breakup in a human ventricular tissue model. Am J Physiol Heart Circ Physiol. 291(3):H1088–H1100.
  • Tous C, Gentles TL, Young AA, Pontré BP. 2020. Ex vivo cardiovascular magnetic resonance diffusion weighted imaging in congenital heart disease, an insight into the microstructures of tetralogy of fallot, biventricular and univentricular systemic right ventricle. J Cardiovasc Magn Reson. 22(1):1–12.
  • Trusty PM, Slesnick TC, Wei ZA, Rossignac J, Kanter KR, Fogel MA, Yoganathan AP. 2018. Fontan surgical planning: previous accomplishments, current challenges, and future directions. J Cardiovasc Transl Res. 11(2):133–144.
  • Tsai S, Husain N, Fischer A, Ro PS, Cheatham JP, Galantowicz M, Cua CL. 2013. QRS duration changes in patients with hypoplastic left heart syndrome undergoing hybrid palliation: prehybrid to post-fontan. Pacing Clin Electrophysiol. 36(4):462–466.
  • Updegrove A, Wilson NM, Merkow J, Lan H, Marsden AL, Shadden SC. 2017. Simvascular: an open source pipeline for cardiovascular simulation. Ann Biomed Eng. 45(3):525–541.
  • Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J, et al. 2020. SciPy 1.0: fundamental Algorithms for scientific computing in Python. Nat Methods. 17(3):261–272.
  • Wen Zhong S, Zhang YQ, Jun Chen L, Zhang ZF, Wu LP, Jing Hong W. 2021. Ventricular function and dyssynchrony in children with a functional single right ventricle using real time three-dimensional echocardiography after fontan operation. Echocardiography. 38(8):1218–1227.
  • Woodworth LA, Cansız B, Kaliske M. 2022. Balancing conduction velocity error in cardiac electrophysiology using a modified quadrature approach. Numer Methods Biomed Eng. 38(5):e3589.
  • Wünnemann F, Andelfinger GU. 2016. Molecular pathways and animal models of hypoplastic left heart syndrome. In: Congenital heart diseases: the broken heart. Vienna: Springer; p. 649–664.
  • Xu X, Friehs I, Zhong Hu T, Melnychenko I, Tampe B, Alnour F, Iascone M, Kalluri R, Zeisberg M, Del Nido PJ, et al. 2015. Endocardial fibroelastosis is caused by aberrant endothelial to mesenchymal transition. Circ Res. 116(5):857–866.
  • Yang W, Chan FP, Reddy VM, Marsden AL, Feinstein JA. 2015. Flow simulations and validation for the first cohort of patients undergoing the y-graft fontan procedure. J Thorac Cardiovasc Surg. 149(1):247–255.
  • Zaidi SJ, Penk J, Cui VW, Roberson DA. 2019. Right ventricular mechanical dyssynchrony in hypoplastic left heart syndrome: correlation with systolic function and qrs duration. Pediatr Cardiol. 40(5):934–942.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.