157
Views
11
CrossRef citations to date
0
Altmetric
RESEARCH ARTICLE

Intelligent solution predictive networks for non-linear tumor-immune delayed model

, , , &
Pages 1091-1118 | Received 21 Dec 2022, Accepted 14 Jun 2023, Published online: 23 Jun 2023

References

  • Ahmad S, Ullah A, Akgül A, Baleanu D. 2022. Theoretical and numerical analysis of fractal fractional model of tumor-immune interaction with two different kernels. Alexandria Eng J. 61(7):5735–5752. doi:10.1016/j.aej.2021.10.065.
  • Altaf F, Chang C-L, Chaudhary NI, Raja MAZ, Cheema KM, Shu C-M, Milyani AH, et. al. 2022. Adaptive evolutionary computation for non-linear hammerstein control autoregressive systems with key term separation principle. Mathematics. 10(6):1001. doi:10.3390/math10061001.
  • Anwar N, Ahmad I, Raja MAZ, Naz S, Shoaib M, Kiani AK. 2022. Artificial intelligence knacks-based stochastic paradigm to study the dynamics of plant virus propagation model with impact of seasonality and delays. Eur Phys J Plus. 137(1):1–47. doi:10.1140/epjp/s13360-021-02248-4.
  • Banerjee S, Khajanchi S, Chaudhuri S. 2015. A mathematical model to elucidate brain tumor abrogation by immunotherapy with T11 target structure. PLoS One. 10(5):e0123611. doi:10.1371/journal.pone.0123611.
  • Barnaby JP, Sorribes IC, Jain HV. 2021. Relating prostate‐specific antigen leakage with vascular tumor growth in a mathematical model of prostate cancer response to androgen deprivation. Comp Sys Onco. 1(2):e1014. doi:10.1002/cso2.1014.
  • Bukhari AH, Raja MAZ, Rafiq N, Shoaib M, Kiani AK, Shu C-M, at al. 2022. Design of intelligent computing networks for non-linear chaotic fractional Rossler system. Chaos Solitons Fractals. 157:111985. doi:10.1016/j.chaos.2022.111985.
  • Chaudhary NI, Raja MAZ, Khan ZA, Mehmood A, Shah SM. 2022. Design of fractional hierarchical gradient descent algorithm for parameter estimation of non-linear control autoregressive systems. Chaos Solitons Fractals. 157:111913. doi:10.1016/j.chaos.2022.111913.
  • Chen GM, Azzam A, Ding YY, Barrett DM, Grupp SA, Tan K. 2020. Dissecting the tumor–immune landscape in chimeric antigen receptor T-cell therapy: key challenges and opportunities for a systems immunology approach. Clin Cancer Res. 26(14):3505–3513. doi:10.1158/1078-0432.CCR-19-3888.
  • Chen SM, Krinsky AL, Woolaver RA, Wang X, Chen Z, Wang JH. 2020. Tumor immune microenvironment in head and neck cancers. Mol Carcinog. 59(7):766–774. doi:10.1002/mc.23162.
  • Cherraf A, Li M, Moulai-Khatir A. 2023. Interaction tumor-immune model with time-delay and immuno-chemotherapy protocol. Rend Circ Mat Palermo II Ser. 72(2):869–887. doi:10.1007/s12215-021-00615-9.
  • d’Onofrio A. 2008. Metamodeling tumor–immune system interaction, tumor evasion and immunotherapy. Math Comput Modell. 47(5-6):614–637. doi:10.1016/j.mcm.2007.02.032.
  • Das A, Dehingia K, Sarmah HK, Hosseini K, Sadri K, Salahshour S. 2022. Analysis of a delay-induced mathematical model of cancer. Adv Cont Discr Mod. 2022(1):15. doi:10.1186/s13662-022-03688-7.
  • Das P, Das S, Das P, Rihan FA, Uzuntarla M, Ghosh D. 2021. Optimal control strategy for cancer remission using combinatorial therapy: a mathematical model-based approach. Chaos Solitons Fractals. 145:110789. doi:10.1016/j.chaos.2021.110789.
  • Das P, Das S, Upadhyay RK, Das P. 2020. Optimal treatment strategies for delayed cancer-immune system with multiple therapeutic approach. Chaos, Solitons Fractals. 136:109806. doi:10.1016/j.chaos.2020.109806.
  • Das P, Mondal P, Das P, Roy TK. 2022. Stochastic persistence and extinction in tumor-immune system perturbed by white noise. Int J Dynam Control. 10(2):620–629. doi:10.1007/s40435-021-00829-w.
  • Das P, Mukherjee S, Das P, Banerjee S. 2020. Characterizing chaos and multifractality in noise-assisted tumor-immune interplay. Nonlinear Dyn. 101(1):675–685. doi:10.1007/s11071-020-05781-6.
  • Das P, Upadhyay RK, Das P, Ghosh D. 2020. Exploring dynamical complexity in a time-delayed tumor-immune model. Chaos. 30(12):123118. doi:10.1063/5.0025510.
  • de Pillis LG, Gu W, Radunskaya AE. 2006. Mixed immunotherapy and chemotherapy of tumors: modeling, applications and biological interpretations. J Theor Biol. 238(4):841–862. doi:10.1016/j.jtbi.2005.06.037.
  • Dehingia K, Das P, Upadhyay RK, Misra AK, Rihan FA, Hosseini K. 2023. Modelling and analysis of delayed tumour–immune system with hunting T-cells. Math Comput Simul. 203:669–684. doi:10.1016/j.matcom.2022.07.009.
  • Dehingia K, Hosseini K, Salahshour S, Baleanu D. 2022. A detailed study on a tumor model with delayed growth of pro-tumor macrophages. Int J Appl Comput Math. 8(5):245. doi:10.1007/s40819-022-01433-y.
  • Dehingia K, Sarmah HK, Alharbi Y, Hosseini K. 2021. Mathematical analysis of a cancer model with time-delay in tumor-immune interaction and stimulation processes. Adv Differ Equ. 2021(1):27. doi:10.1186/s13662-021-03621-4.
  • Dehingia K, Sarmah HK, Jeelani MB. 2021. A brief review on cancer research and its treatment through mathematical modelling. Ann Cancer Res Ther. 29(1):34–40.
  • Eskandari Z, Avazzadeh Z, Khoshsiar Ghaziani R, Li B. 2022. Dynamics and bifurcations of a discrete‐time Lotka–Volterra model using nonstandard finite difference discretization method. Math Methods App Sci. doi:10.1002/mma.8859.
  • Foryś U, Marciniak-Czochra A. 2003. Logistic equations in tumour growth modelling. Int J Appl Math Comput Sci. 13(3):317–325.
  • Ghosh D, Khajanchi S, Mangiarotti S, Denis F, Dana SK, Letellier C. 2017. How tumor growth can be influenced by delayed interactions between cancer cells and the microenvironment? Biosystems. 158:17–30. doi:10.1016/j.biosystems.2017.05.001.
  • Ghosh S, Banerjee S. 2022. Delay induced interaction of humoral-and cell-mediated immune responses with cancer. Theory Biosci. 141(1):27–40. doi:10.1007/s12064-022-00364-y.
  • Khajanchi S, Banerjee S. 2014. Stability and bifurcation analysis of delay induced tumor immune interaction model. Appl Math Comput. 248:652–671. doi:10.1016/j.amc.2014.10.009.
  • Khajanchi S, Banerjee S. 2017. Quantifying the role of immunotherapeutic drug T11 target structure in progression of malignant gliomas: mathematical modeling and dynamical perspective. Math Biosci. 289:69–77. doi:10.1016/j.mbs.2017.04.006.
  • Khajanchi S, Banerjee S. 2018. Influence of multiple delays in brain tumor and immune system interaction with T11 target structure as a potent stimulator. Math Biosci. 302:116–130. doi:10.1016/j.mbs.2018.06.001.
  • Khajanchi S, Banerjee S. 2019. A strategy of optimal efficacy of T11 target structure in the treatment of brain tumor. J Biol Syst. 27(02):225–255. doi:10.1142/S0218339019500104.
  • Khajanchi S, Ghosh D. 2015. The combined effects of optimal control in cancer remission. Appl Math Comput. 271:375–388. doi:10.1016/j.amc.2015.09.012.
  • Khajanchi S, Nieto JJ. 2019. Mathematical modeling of tumor-immune competitive system, considering the role of time delay. Appl Math Comput. 340:180–205. doi:10.1016/j.amc.2018.08.018.
  • Khajanchi S, Perc M, Ghosh D. 2018. The influence of time delay in a chaotic cancer model. Chaos. 28(10):103101. doi:10.1063/1.5052496.
  • Khajanchi S. 2015. Bifurcation analysis of a delayed mathematical model for tumor growth. Chaos Solitons Fractals. 77:264–276. doi:10.1016/j.chaos.2015.06.001.
  • Khajanchi S. 2019. Stability analysis of a mathematical model for glioma-immune interaction under optimal therapy. Int J Nonlinear Sci Numer Simul. 20(3-4):269–285. doi:10.1515/ijnsns-2017-0206.
  • Khajanchi S. 2020. Chaotic dynamics of a delayed tumor–immune interaction model. Int J Biomath. 13(02):2050009. doi:10.1142/S1793524520500096.
  • Khajanchi S. 2021. The impact of immunotherapy on a glioma immune interaction model. Chaos Solitons Fractals. 152:111346. doi:10.1016/j.chaos.2021.111346.
  • Khan I, Raja MAZ, Khan MAR, Shoaib M, Islam S, Shah Z. 2022. Design of backpropagated intelligent networks for non-linear second-order Lane–Emden pantograph delay differential systems. Arab J Sci Eng. 47(2):1197–1210. doi:10.1007/s13369-021-05814-1.
  • Khan ZA, Raja MAZ, Chaudhary NI, Mehmood K, He Y. 2022. MISGD: moving-information-based stochastic gradient descent paradigm for personalized fuzzy recommender systems. Int J Fuzzy Syst. 24(1):686–712. doi:10.1007/s40815-021-01177-9.
  • Li B, Liang H, He Q. 2021. Multiple and generic bifurcation analysis of a discrete Hindmarsh-Rose model. Chaos Solitons Fractals. 146:110856. doi:10.1016/j.chaos.2021.110856.
  • Li B, Liang H, Shi L, He Q. 2022. Complex dynamics of Kopel model with nonsymmetric response between oligopolists. Chaos Solitons Fractals. 156:111860. doi:10.1016/j.chaos.2022.111860.
  • Li HZ, Liu XD, Yan R, Liu C. 2020. Hopf bifurcation analysis of a tumor virotherapy model with two time delays. Physica A. 553:124266. doi:10.1016/j.physa.2020.124266.
  • Li J, Ma X, Chen Y, Zhang D. 2022. Complex dynamic behaviors of a tumor-immune system with two delays in tumor actions. Discrete Continuous Dynam Syst-B. 27(12):7065–7087.
  • Makaryan SZ, Cess CG, Finley SD. 2020. Modeling immune cell behavior across scales in cancer. Wiley Interdiscip Rev Syst Biol Med. 12(4):e1484.
  • Marušić M, Bajzer Ž, Freyer JP, Vuk‐Pavlović S. 1994. Analysis of growth of multicellular tumour spheroids by mathematical models. Cell Prolif. 27(2):73–94. doi:10.1111/j.1365-2184.1994.tb01407.x.
  • Mehmood A, Raja MAZ, Shi P, Chaudhary NI. 2022. Weighted differential evolution-based heuristic computing for identification of Hammerstein systems in electrically stimulated muscle modeling. Soft Comput. 26(17):8929–8945. doi:10.1007/s00500-021-06701-5.
  • Nyarko PR, Anokye M. 2020. Mathematical modeling and numerical simulation of a multiscale cancer invasion of host tissue. AIMS Mathematics. 5(4):3111–3124. doi:10.3934/math.2020200
  • Pereira CA, Vermeire BC. 2020. Fully-discrete analysis of high-order spatial discretizations with optimal explicit runge–kutta methods. J Sci Comput. 83(3):1–35. doi:10.1007/s10915-020-01243-8.
  • Pourhasanzade F, Sabzpoushan SH. 2021. A new mathematical model for controlling tumor growth based on microenvironment acidity and oxygen concentration. Biomed Res Int. 2021:1–18. doi:10.1155/2021/8886050.
  • Raja MAZ, Awan SE, Shoaib M, Awais M. 2022. Backpropagated intelligent networks for the entropy generation and joule heating in hydromagnetic nanomaterial rheology over surface with variable thickness. Arab J Sci Eng. 47(6):7753–7777. doi:10.1007/s13369-022-06667-y.
  • Raja MAZ, Mehmood A, Ashraf S, Awan KM, Shi P. 2022. Design of evolutionary finite difference solver for numerical treatment of computer virus propagation with countermeasures model. Math Comput Simul. 193:409–430. doi:10.1016/j.matcom.2021.10.004.
  • Raja MAZ, Naz H, Shoaib M, Mehmood A. 2022. Design of backpropagated neurocomputing paradigm for Stuxnet virus dynamics in control infrastructure. Neural Comput Applic. 34(7):5771–5790. doi:10.1007/s00521-021-06721-0.
  • Raja MAZ, Shoaib M, Khan Z, Zuhra S, Saleel CA, Nisar KS, Islam S, Khan I. 2022. Supervised neural networks learning algorithm for three dimensional hybrid nanofluid flow with radiative heat and mass fluxes. Ain Shams Eng J. 13(2):101573. doi:10.1016/j.asej.2021.08.015.
  • Raja MAZ, Tabassum R, El-Zahar ER, Shoaib M, Khan MI, Malik MY, Khan SU, Qayyum S. 2022a. Intelligent computing through neural networks for entropy generation in MHD third-grade nanofluid under chemical reaction and viscous dissipation. Waves Random Complex Medium. :1–25. doi:10.1080/17455030.2022.2044095.
  • Raja MAZ, Tabassum R, El-Zahar ER, Shoaib M, Khan MI, Malik MY, Khan SU, Qayyum S. 2022b. Heat transport in entropy-optimized flow of viscoelastic fluid due to Riga plate: analysis of artificial neural network. Waves Random Complex Medium. :1–25. doi:10.1080/17455030.2022.2028933.
  • Rihan FA, Alsakaji HJ, Kundu S, Mohamed O. 2022. Dynamics of a time-delay differential model for tumour-immune interactions with random noise. Alexandria Eng J. 61(12):11913–11923. doi:10.1016/j.aej.2022.05.027.
  • Rihan FA, Lakshmanan S, Maurer H. 2019. Optimal control of tumour-immune model with time-delay and immuno-chemotherapy. Appl Math Comput. 353:147–165. doi:10.1016/j.amc.2019.02.002.
  • Rihan FA, Velmurugan G. 2020. Dynamics of fractional-order delay differential model for tumor-immune system. Chaos Solitons Fractals. 132:109592. doi:10.1016/j.chaos.2019.109592.
  • Rihan FA. 2021. Delay differential equations of tumor-immune system with treatment and control. Delay differential equations and applications to biology. Singapore: Springer; p. 167–189.
  • Ruan S. 2021. Nonlinear dynamics in tumor-immune system interaction models with delays. Discrete Continuous Dynam Syst-B. 26(1):541–602. doi:10.3934/dcdsb.2020282.
  • Sabir Z, Botmart T, Asif Zahoor Raja M, Weera W, Sadat R, Ali MR, Alsulami AA, Alghamdi A. 2022. Artificial neural network scheme to solve the non-linear influenza disease model. Biomed Signal Process Control. 75:103594. doi:10.1016/j.bspc.2022.103594.
  • Sabir Z, Raja MAZ, Alnahdi AS, Jeelani MB, Abdelkawy MA. 2022. Numerical investigations of the nonlinear smoke model using the Gudermannian neural networks. Math Biosci Eng. 19(1):351–370. doi:10.3934/mbe.2022018.
  • Sabir Z, Raja MAZ, Mahmoud SR, Balubaid M, Algarni A, Alghtani AH, Aly AA, Le D-N. 2022. A novel design of Morlet wavelet to solve the dynamics of nervous stomach non-linear model. Int J Comput Intell Syst. 15(1):1–15. doi:10.1007/s44196-021-00057-2.
  • Saifullah S, Ahmad S, Jarad F. 2022. Study on the dynamics of a piecewise tumor–immune interaction model. Fractals. 30(08):2240233. doi:10.1142/S0218348X22402332.
  • Sardar M, Biswas S, Khajanchi S. 2021. The impact of distributed time delay in a tumor-immune interaction system. Chaos Solitons Fractals. 142:110483. doi:10.1016/j.chaos.2020.110483.
  • Sardar M, Khajanchi S, Biswas S, Abdelwahab SF, Nisar KS. 2021. Exploring the dynamics of a tumor-immune interplay with time delay. Alexandria Eng J. 60(5):4875–4888. doi:10.1016/j.aej.2021.03.041.
  • Sarkar RR, Banerjee S. 2005. Cancer self remission and tumor stability–a stochastic approach. Math Biosci. 196(1):65–81. doi:10.1016/j.mbs.2005.04.001.
  • Shoaib M, Kausar M, Nisar KS, Raja MAZ, Zeb M, Morsy A. 2022. The design of intelligent networks for entropy generation in Ree-Eyring dissipative fluid flow system along quartic autocatalysis chemical reactions. Int Commun Heat Mass Transfer. 133:105971. doi:10.1016/j.icheatmasstransfer.2022.105971.
  • Singh PP, Roy BK. 2022. Chaos and multistability behaviors in 4D dissipative cancer growth/decay model with unstable line of equilibria. Chaos Solitons Fractals. 161:112312. doi:10.1016/j.chaos.2022.112312.
  • Ullah Khan W, Asif Zahoor Raja M, He Y, Ishtiaq Chaudhary N. 2022. A novel application of integrated grasshopper optimization heuristics for attenuation of noise interferences. Ain Shams Eng J. 13(2):101536. doi:10.1016/j.asej.2021.06.022.
  • Wan X, Xu Y, Wu X, Xie C. 2022. Observer-based quantized control for discrete-time switched systems with infinitely distributed delay. J Franklin Inst. 359(8):3597–3613. doi:10.1016/j.jfranklin.2022.03.012.
  • Welsh M. 2022. Perspectives on vascular regulation of mechanisms controlling selective immune cell function in the tumor immune response. IJMS. 23(4):2313. doi:10.3390/ijms23042313.
  • World Health Organization (WHO) report. https://www.who.int/health-topics/cancer#tab=tab_1.
  • Zhang L, Rahman MU, Ahmad S, Riaz MB, Jarad F. 2022. Dynamics of fractional order delay model of coronavirus disease. MATH. 7(3):4211–4232. doi:10.3934/math.2022234.
  • Zhao XE, Hu B. 2020. The impact of time delay in a tumor model. Nonlinear Anal Real World Appl. 51:103015. doi:10.1016/j.nonrwa.2019.103015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.