774
Views
11
CrossRef citations to date
0
Altmetric
Stable Isotopes in Mammals

Coyote (Canis latrans) mammalian prey diet shifts in response to seasonal vegetation changeFootnote

, , &
Pages 343-360 | Received 30 Jun 2013, Accepted 08 Apr 2014, Published online: 07 Jul 2014

References

  • Estes JA, Duggins DO. Sea otters and kelp forests in Alaska: generality and variation in a community ecological paradigm. Ecol Monogr. 1995;65:75–100. doi: 10.2307/2937159
  • Crooks KR, Soule ME. Mesopredator release and avifaunal extinctions in a fragmented system. Nature. 1999;400:563–566. doi: 10.1038/23028
  • Ripple WJ, Beschta RL. Wolves, elk, willows, and trophic cascades in the Upper Gallatin Range of southwestern Montana, USA. Forest Ecol Manage. 2004;200:161–181. doi: 10.1016/j.foreco.2004.06.017
  • Todd AW, Keith LB, Fischer CA. Population ecology of coyotes during a fluctuation of snowshoe hares. J Wildl Manage. 1981;45:629–640. doi: 10.2307/3808696
  • Jaksic FM, Silva SI, Meserve PL, Gutiérrez JR. A long-term study of vertebrate predator responses to an El Niño (ENSO) disturbance in western South America. Oikos. 1997;78:341–354. doi: 10.2307/3546302
  • Previtali AM, Lima M, Meserve PL, Kelt DA, Gutiérrez JR. Population dynamics of two sympatric rodents in a variable environment: rainfall, resource availability, and predation. Ecology. 2009;90:1996–2006. doi: 10.1890/08-0405.1
  • O'Donoghue M, Boutin S, Krebs CJ, Hofer EJ. Numerical responses of coyotes and lynx to the snowshoe hare cycle. Oikos. 1997;80:150–162. doi: 10.2307/3546526
  • Hone J, Krebs C, O'Donoghue M, Boutin S. Evaluation of predator numerical responses. Wildl Res. 2007;34: 335–341. doi: 10.1071/WR06171
  • Estes JA, Terborgh J, Brashares JS, Power ME, Berger J, Bond WJ, Carpenter SR, Essington TE, Holt RD, Jackson JBC, Marquis RJ, Oksanen L, Oksanen T, Paine RT, Pikitch EK, Ripple WJ, Sandin SA, Scheffer M, Schoener TW, Shurin JB, Sinclair ARE, Soule ME, Virtanen R, Wardle DA. Trophic downgrading of planet Earth. Science. 2011;333:301–306.
  • Archer S. Tree–grass dynamics in a Prosopis-thornscrub savanna parkland: reconstructing the past and predicting the future. Ecoscience. 1995;2:83–99.
  • Van Auken OW. Shrub invasions of North American semiarid grasslands. Annu Rev Ecol Syst. 2000;31:197–215. doi: 10.1146/annurev.ecolsys.31.1.197
  • D'Odorico P, Porporato A. Ecohydrology of arid and semiarid ecosystems: an introduction. In: D'Odorico P, Porporato A, editors. Dryland ecohydrology. Dordrecht, The Netherlands: Springer; 2006. p. 1–10.
  • Ravi S, D'Odorico P, Wang L, White CS, Okin GS, Macko SA, Collins SL. Post-fire resource redistribution in desert grasslands: a possible negative feedback on land degradation. Ecosystems. 2009;12:434–444. doi: 10.1007/s10021-009-9233-9
  • Seamster VA. Consequences of woody plant encroachment for mammalian predators [dissertation]. Charlottesville (VA): University of Virginia; 2010.
  • Archer S. Have southern Texas savannas been converted to woodlands in recent history? Am Nat. 1989;134:545–561. doi: 10.1086/284996
  • Gill RA, Burke IC. Ecosystem consequences of plant life form changes at three sites in the semiarid United States. Oecologia. 1999;121:551–563. doi: 10.1007/s004420050962
  • Blaum N, Rossmanith E, Jeltsch F. Land use affects rodent communities in Kalahari savannah rangelands. Afr J Ecol. 2006;45;189–195. doi: 10.1111/j.1365-2028.2006.00696.x
  • Blaum N, Rossmanith E, Popp A, Jeltsch F. Shrub encroachment affects mammalian carnivore abundance and species richness in semiarid rangelands. Acta Oecol. 2007;31:86–92. doi: 10.1016/j.actao.2006.10.004
  • Sirami C, Monadjem A. Changes in bird communities in Swaziland savannas between 1998 and 2008 owing to shrub encroachment. Divers Distrib. 2012;18:390–400. doi: 10.1111/j.1472-4642.2011.00810.x
  • Noy-Meir I. Desert ecosystems: environment and producers. Annu Rev Ecol Syst. 1973;4:25–51. doi: 10.1146/annurev.es.04.110173.000325
  • Ernest SKM, Brown JH, Parmenter RR. Rodents, plants, and precipitation: spatial and temporal dynamics of consumers and resources. Oikos. 2000;88:470–482. doi: 10.1034/j.1600-0706.2000.880302.x
  • Schwinning S, Sala OE. Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia. 2004;141:211–220.
  • Muldavin EH, Moore DI, Collins SL, Wetherill KR, Lightfoot DC. Aboveground net primary production dynamics in a northern Chihuahuan Desert ecosystem. Oecologia. 2008;155:123–132. doi: 10.1007/s00442-007-0880-2
  • Warne RW, Pershall AD, Wolf BO. Linking precipitation and C3–C4 plant production to resource dynamics in higher-trophic-level consumers. Ecology. 2010;91:1628–1638. doi: 10.1890/08-1471.1
  • Andelt WF, Kie JG, Knowlton FF, Cardwell K. Variation in coyote diets associated with season and successional changes in vegetation. J Wildl Manage. 1987;51:273–277. doi: 10.2307/3801002
  • Hernández L, Parmenter RR, Dewitt JW, Lightfoot DC, Laundré JW. Coyote diets in the Chihuahuan Desert, more evidence for optimal foraging. J Arid Environ. 2002;51:613–624. doi: 10.1016/S0140-1963(01)90963-2
  • Hernández L, Romero AG, Laundré LW, Lightfoot D, Aragón E, López-Portillo J. Changes in rodent community structure in the Chihuahuan Desert México: comparisons between two habitats. J Arid Environ. 2005;60:239–257. doi: 10.1016/j.jaridenv.2004.03.013
  • Báez S, Collins SL. Shrub invasion decreases diversity and alters community stability in northern Chihuahuan Desert plant communities. PLoS ONE. 2008;3:e2332. doi: 10.1371/journal.pone.0002332
  • IUCN: Red list of threatened species [Internet]. Cambridge: International Union for Conservation of Nature and Natural Resources; [cited 2010 Aug 16]. Available from: http://www.iucnredlist.org.
  • Hidalgo-Mihart MG, Cantú-Salazar L, López-González CA, Martínez-Meyer E, González-Romero A. Coyote (Canis latrans) food habits in a tropical deciduous forest of western Mexico. Am Midl Nat. 2001;146:210–216. doi: 10.1674/0003-0031(2001)146[0210:CCLFHI]2.0.CO;2
  • Samson C, Créte M. Summer food habits and population density of coyotes, Canis latrans, in boreal forests of southeastern Québec. Can Field Nat. 1997;111:227–233.
  • Hamlin, KL, Riley SJ, Pyrah D, Dood AR, Mackie RJ. Relationships among mule deer fawn mortality, coyotes, and alternate prey species during summer. J Wildl Manage. 1984;48:489–499. doi: 10.2307/3801181
  • Windberg LA, Mitchell CD. Winter diets of coyotes in relation to prey abundance in southern Texas. J Mammal. 1990;71:439–447. doi: 10.2307/1381958
  • Young JK, Andelt WF, Terletzky PA, Shivik JA. A comparison of coyote ecology after 25 years: 1978 versus 2003. Can J Zool. 2006;84:573–582. doi: 10.1139/z06-030
  • Bender MM. Variations in the C ratios of plants in relation to the pathway of photosynthetic carbon dioxide fixation. Phytochemistry. 1971;10:1239–1244. doi: 10.1016/S0031-9422(00)84324-1
  • Farquhar GD. On the nature of carbon isotope discrimination in C4 species. Aust J Plant Physiol. 1983;10:205–226. doi: 10.1071/PP9830205
  • Sternberg LO, DeNiro MJ, Johnson HB. Isotope ratios of cellulose from plants having different photosynthetic pathways. Plant Physiol. 1984;74:557–561. doi: 10.1104/pp.74.3.557
  • Marshall JD, Brooks JR, Lajtha K. Sources of variation in the stable isotopic composition of plants. In: Michener R, Lajtha K, editors. Stable isotopes in ecology and environmental science. Oxford: Blackwell Publishing; 2007. p. 22–60.
  • Ambrose SH, DeNiro MJ. The isotopic ecology of east African mammals. Oecologia. 1986;69:395–406. doi: 10.1007/BF00377062
  • Codron D, Codron J, Lee-Thorp JA, Sponheimer M, de Ruiter D. Animal diets in the Waterberg based on stable isotopic composition of faeces. S Afr J Wildl Res. 2005;35:43–52.
  • Codron D, Codron J, Lee-Thorp JA, Sponheimer M, de Ruiter D, Sealy J, Grant R, Fourie N. Diets of savanna ungulates from stable carbon isotope composition of faeces. J Zool. 2007;273:21–29. doi: 10.1111/j.1469-7998.2007.00292.x
  • Moore D. ClimDB monthly data [Internet]. Albuquerque: Sevilleta Long Term Ecological Research Site; [cited 2011 May 20]. Available from: http://sev.lternet.edu/search/climate/searchmonthly.php
  • Frantzen MAJ, Silk JB, Ferguson JWH, Wayne RK, Kohn MH. Empirical evaluation of preservation methods for fecal DNA. Mol Ecol. 1998;7:1423–1428. doi: 10.1046/j.1365-294x.1998.00449.x
  • Murphy MA, Waits LP, Kendall KC. Quantitative evaluation of fecal drying methods for brown bear DNA analysis. Wildl Soc Bull. 2000;28:951–957.
  • Onorato D, White C, Zager P, Waits LP. Detection of predator presence at elk mortality sites using mtDNA analysis of hair and scat samples. Wildl Soc Bull. 2006;34:815–820. doi: 10.2193/0091-7648(2006)34[815:DOPPAE]2.0.CO;2
  • Stenglein JL, Waits LP, Ausband DE, Zager P, Mack CM. Efficient, noninvasive genetic sampling for monitoring introduced wolves. J Wildl Manage. 2010;74:1050–1058. doi: 10.2193/2009-305
  • Ostrander EA, Sprague GF, Rine J. Identification and characterization of dinucleotide repeat (CA)n markers for genetic mapping in dog. Genomics. 1993;16:207–213. doi: 10.1006/geno.1993.1160
  • Ostrander EA, Mapa FA, Yee M, Rine J. One hundred and one new simple sequence repeat-based markers for the canine genome. Mamm Genome. 1995;6:192–195. doi: 10.1007/BF00293011
  • Francisco LV, Langston AA, Mellersh CS, Neal CL, Ostrander EA. A class of highly polymorphic tetranucleotide repeats for canine genetic mapping. Mamm Genome. 1996;7:359–362. doi: 10.1007/s003359900104
  • Applied Biosystems. GeneMapper [CD-ROM]. Version 3.7. Foster City (CA): Applied Biosystems; 2004. 1 CD-ROM: 4 3/4 in.
  • Valière N. GIMLET: a computer program for analyzing genetic individual identification data. Mol Ecol Notes. 2002;2:377–379. doi: 10.1046/j.1471-8286.2002.00134.x
  • Miller CR, Joyce P, Waits LP. Assessing allelic dropout and genotype reliability using maximum likelihood. Genetics. 2002;160:357–366.
  • Raymond M, Rousset F. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered. 1995;86:248–249.
  • Rousset F. Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Mol Ecol Resour. 2008;8:103–106. doi: 10.1111/j.1471-8286.2007.01931.x
  • Sacks BN, Brown SK, Ernest HB. Population structure of California coyotes corresponds to habitat-specific breaks and illuminates species history. Mol Ecol. 2004;13:1265–1275. doi: 10.1111/j.1365-294X.2004.02110.x
  • Muldavin E, Shore G, Taugher K, Milne B. A vegetation classification and map for the Sevilleta National Wildlife Refuge, New Mexico. Albuquerque (New Mexico, USA): New Mexico Natural Heritage Program and Sevilleta Long Term Ecological Research Program, Biology Department, University of New Mexico; 1998.
  • ESRI Inc. ArcGIS for desktop [CD-ROM]. Version 10.1. Redlands (CA): ESRI Inc.; 2012. 1 CD-ROM: 4 ¾ in.
  • Windberg LA, Ebbert SM, Kelly BT. Population characteristics of coyotes (Canis latrans) in the northern Chihuahuan Desert of New Mexico. Am Midl Nat. 1997;138:197–207. doi: 10.2307/2426666
  • Tieszen LL, Boutton TW, Tesdahl KG, Slade NA. Fractionation and turnover of stable carbon isotopes in animal tissues: implications for δ13C analysis of diet. Oecologia. 1983;57:32–37. doi: 10.1007/BF00379558
  • Fedriani JM, Kohn MH. Genotyping faeces links individuals to their diet. Ecol Lett. 2001;4:477–483. doi: 10.1046/j.1461-0248.2001.00250.x
  • Friggens M. Small mammal mark-recapture population dynamics at core research sites at the Sevilleta National Wildlife Refuge, New Mexico [Internet]. Albuquerque: Sevilleta Long Term Ecological Research Database, SEV008; [cited 2013 Jan 6]. Available from: http://sev.lternet.edu/data/sev-008
  • Hope AG, Parmenter RR. Food habits of rodents inhabiting arid and semi-arid ecosystems of central New Mexico. Spec Publ Museum Southwest Biol. 2007;9:1–75.
  • Hopkins JB, Ferguson JM. Estimating the diets of animals using stable isotopes and a comprehensive Bayesian mixing model. PLoS ONE. 2012; 7:e28478. doi: 10.1371/journal.pone.0028478
  • Kurle CM, Koch PL, Tershy BR, Croll DA. The effects of sex, tissue type, and dietary components on stable isotope discrimination factors (Δ13C and Δ15N) in mammalian omnivores. Isotopes Environ Health Stud. 2014;50. doi:10.1080/10256016.2014.908872.
  • Hopkins JB III, Koch PL, Schwartz CC, Ferguson JM, Greenleaf SS, Kalinowski ST. Stable isotopes to detect food-conditioned bears and to evaluate human-bear management. The J Wildl Manage. 2012; 76:703–713. doi: 10.1002/jwmg.318
  • Hopkins JB III, Koch PL, Ferguson JM, Kalinowski ST. The changing anthropogenic diets of American black bears over the past century in Yosemite National Park. Front Ecol Environ. 2014;12:107–114. doi: 10.1890/130276
  • SAS Institute Inc. SAS [CD-ROM]. Version 9.1.3. Cary (NC): SAS Institute Inc.; 2003.
  • SAS Institute Inc. SAS [CD-ROM]. Version 9.3. Cary (NC): SAS Institute Inc.; 2010.
  • R Core Team. R: a language and environment for statistical computing. Version 3.0.1. Vienna: R Foundation for Statistical Computing; 2013. Available from: http://www.R-project.org/.
  • Bergstrom BJ. Would east African savanna rodents inhibit woody encroachment? Evidence from stable isotopes and microhistological analysis of feces. J Mammal. 2013;94:436–447. doi: 10.1644/12-MAMM-A-146.1
  • Warne RW, Gilman CA, Wolfe BO. Tissue-carbon incorporation rates in lizards: implications for ecological studies using stable isotopes in terrestrial ectotherms. Physiol Biochem Zool. 2010;83:608–617. doi: 10.1086/651585
  • Caswell H, Reed F, Stephenson SN, Werner PA. Photosynthetic pathways and selective herbivory: a hypothesis. Am Nat. 1973;107:465–480. doi: 10.1086/282851
  • Ehleringer JR, Cerling TF, Dearing MD. Atmospheric CO2 as a global change driver influencing plant–animal interactions. Integr Comp Biol. 2002;42:424–430. doi: 10.1093/icb/42.3.424
  • Barbehenn RV, Chen Z, Karowe DN, Spickard A. C3 grasses have higher nutritional quality than C4 grasses under ambient and elevated atmospheric CO2. Glob Change Biol. 2004;10:1565–1575. doi: 10.1111/j.1365-2486.2004.00833.x
  • USDA, NRCS: the PLANTS database [Internet]. Greensboro: National Plant Data Team; [cited 2013 May 19]. Available from: http://plants.usda.gov.
  • Whitaker JO. National Audubon Society: field guide to mammals. New York: Alfred A. Knopf, Inc.; 2000.
  • Schroder GD, Rosenzweig ML. Perturbation analysis of competition and overlap in habitat utilization between Dipodomys ordii and Dipodomys merriami. Oecologia. 1975;19:9–28. doi: 10.1007/BF00377586
  • Fry B, Joern A, Parker PL. Grasshopper food web analysis: use of carbon isotope ratios to examine feeding relationships among terrestrial herbivores. Ecology. 1978;59:498–506. doi: 10.2307/1936580
  • Magnusson WE, Carmozina de Araujo M, Cintra R, Lima AP, Martinelli LA, Sanaiotti TM, Vasconcelos HL, Victoria RL. Contributions of C3 and C4 plants to higher trophic levels in an Amazonian savanna. Oecologia. 1999;119:91–96.
  • Smith KF, Sharp ZD, Brown JH. Isotopic composition of carbon and oxygen in desert fauna: investigations into the effects of diet, physiology, and seasonality. J Arid Environ. 2002;52:419–430. doi: 10.1006/jare.2002.1019
  • Barbehenn RV, Karowe DN, Spickard A. Effects of elevated atmospheric CO2 on the nutritional ecology of C3 and C4 grass-feeding caterpillars. Oecologia. 2004;140:86–95. doi: 10.1007/s00442-004-1572-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.