404
Views
22
CrossRef citations to date
0
Altmetric
Articles

Oxygen isotope fractionation in double carbonates

&
Pages 29-46 | Received 23 Apr 2014, Accepted 01 Sep 2014, Published online: 13 Nov 2014

References

  • Liebermann O. Synthesis of dolomite. Nature. 1967;213:241–245. doi: 10.1038/213241a0
  • Lippmann F. Sedimentary carbonate minerals. Heidelberg: Springer; 1973.
  • Matthews A, Katz A. Oxygen isotope fractionation during the dolomitization of calcium carbonate. Geochim Cosmochim Acta. 1977;41:1431–1438. doi: 10.1016/0016-7037(77)90249-6
  • Morrow DW, Ricketts BD. Chemical controls on the precipitation of mineral analogues of dolomite: the sulfate enigma. Geology. 1986;14:408–410. doi: 10.1130/0091-7613(1986)14<408:CCOTPO>2.0.CO;2
  • Usdowski E. Synthesis of dolomite at 60°C in the system . Naturwissenschaften. 1989;76:374–375. doi: 10.1007/BF00366209
  • Vasconcelos C, McKenzie JA, Warthmann R, Bernasconi SM. Calibration of the δ18O paleothermometer for dolomite precipitated in bicrobial cultures and natural environments. Geology. 2005;33:317–320. doi: 10.1130/G20992.1
  • Lippmann F. Die Synthese des Norsethit, BaMg(CO3)2, bei ca. 20°C und 1 at. Ein Modell zur Dolomitisierung. Neues Jb Miner Monatsh. 1967;12:23–29.
  • Lippmann F. Syntheses of BaMg(CO3)2 (norsethite) at 20°C and the formation of dolomite in sediments. In: Müller, Friedman GM, editors. Recent developments in carbonate sedimentology in Central Europe. Berlin: Springer; 1968. p. 33–37.
  • Hood WC, Steidl PF, Tschopp DG. Precipitation of norsethite at room temperature. Am Mineral. 1974;59:471–474.
  • Morrow DW, Ricketts BD. Chemical controls on the precipitation of mineral analogues of dolomite: the sulfate enigma. Geology. 1986;14:408–410. doi: 10.1130/0091-7613(1986)14<408:CCOTPO>2.0.CO;2
  • Böttcher ME, Gehlken P-L, Skogby H, Reutel C. The vibrational spectra of BaMg(CO3)2 (norsethite). Mineral Mag. 1997;61:249–256. doi: 10.1180/minmag.1997.061.405.08
  • Böttcher ME. Stable isotope fractionation during experimental formation of norsethite (BaMg[CO3]2): a mineral analogue to dolomite. Aquat Geochem. 2000;6:201–212. doi: 10.1023/A:1009646805933
  • Young B. The distribution of barytocalcite and alstonite in the Northern Pennine Orefield. Proc Yorks Geol Soc. 1984;45:199–206. doi: 10.1144/pygs.45.3.199
  • Alabaster C. Alstonite and barytocalcite from Lantrisant, South Wales and barytocalcite from Holwell, Mendip Hill, England. J Russell Soc. 1990;3:1–6.
  • Frondel C, Bauer LH. Kutnahorite: a manganese dolomite. Am Mineral. 1955;40:748–760.
  • Peacor DR, Essene EJ, Gaines AM. Petrological and crystal-chemical implications of cation order–disorder in kutnahorite [CaMn(CO3)2]. Am Mineral. 1987;72:319–328.
  • Bamburak JD. Manitoba geological survey's stratigraphic corehole drilling program (parts of NTS 62N1, 16, 63C1). In: Report of Activities 2007, Manitoba Science, Technology, Energy and Mines, Manitoba Geological Survey; 2007. p. 166–174.
  • Cabala J, Zogala B, Dubiel R. Geochemical and geophysical study of historical Zn–Pb ore processing waste dump areas (southern Poland). Polish J Environ Stud. 2008;17:693–700.
  • Konev AA, Vorobev EI, Piskunova LF, Ushchapovskaya ZF, Tichonova GA. [Olekminskite Sr(Sr, Ca, Ba)(CO3)2 – a new mineral and the new isomorphous series olekminskite-paralstonite]. Zap Vses Mineral Obshch. 1991;120:89–96 (Russian).
  • Lippmann F. PbMg(CO3)2, ein neues rhomboedrisches Doppelkarbonat. Naturwissenschaften. 1966;53:701. doi: 10.1007/BF00602722
  • Böttcher ME, Gehlken P-L, Reutel C. The vibrational spectra of PbMg(CO3)2. Neues Jb Miner Monatsh. 1996;6:241–250.
  • Froese E. A note on strontium magnesium carbonate. Can Mineral. 1967;9:65–70.
  • Böttcher ME, Effenberger HS, Gehlken P-L, Grathoff G, Schmidt B, Geprägs P, Bahlo R, Dellwig O, Leipe T, Winde V, Deutschmann A, Stark A, Gallego-Torres D, Martinez-Ruiz F. BaMn[CO3]2 – A previously unrecognized double carbonate in low-temperature environments: structural, spectroscopic, and textural tools for future identification. Chem Erde–Geochem. 2012;72:85–89. doi: 10.1016/j.chemer.2012.01.001
  • Böttcher ME, Geprägs P, Neubert N, von Allmen K, Pretet C, Samankassou E, Nägler TF. Barium isotope fractionation during experimental formation of the double carbonate BaMn[CO3]2 at ambient temperature. Isot Environ Health Stud. 2012;48:457–463. doi: 10.1080/10256016.2012.673489
  • Schmidt B, Gehlken P-L, Böttcher ME. The vibrational spectra of BaMn[CO3]2, and a revised Raman spectrum of BaMg[CO3]2. Eur J Mineral. 2013;25:137–144. doi: 10.1127/0935-1221/2013/0025-2272
  • Urey HC. The thermodynamic properties of isotopic substances. J Chem Soc. 1947;562–581.
  • Bigeleisen J, Mayer MG. Calculation of equilibrium constants for isotopic exchange reactions. J Chem Phys. 1947;15:261–267. doi: 10.1063/1.1746492
  • Richet P, Bottinga Y, Javoy M. A review of hydrogen, carbon, nitrogen, oxygen, sulfur, and chloride stable isotope fractionation among gaseous molecules. Annu Rev Earth Planet Sci. 1977;5:65–110. doi: 10.1146/annurev.ea.05.050177.000433
  • Schauble EA. Applying stable isotope fractionation theory to new systems. Rev Mineral Geochem. 2004;55:65–111. doi: 10.2138/gsrmg.55.1.65
  • Zeebe RE. Hydration in solution is critical for stable oxygen isotope fractionation between carbonate ion and water. Geochim Cosmochim Acta. 2009;73:5283–5291. doi: 10.1016/j.gca.2009.06.013
  • Zheng Y-F. On the theoretical calculations of oxygen isotope fractionation factors for carbonate–water systems. Geochem J. 2011;45:341–354. doi: 10.2343/geochemj.1.0125
  • Chacko T, Deines P. Theoretical calculation of oxygen isotope fractionation factors in carbonate systems. Geochim Cosmochim Acta. 2008;72:3642–3660. doi: 10.1016/j.gca.2008.06.001
  • Hoefs J. Stable isotope geochemistry. 6th ed. Berlin: Springer; 2009.
  • O'Neil JR. Theoretical and experimental aspects of isotopic fractionation. Rev Mineral. 1986;16:1–40.
  • Zheng Y-F. Calculation of oxygen isotope fractionation in metal oxides. Geochim Cosmochim Acta. 1991;55:2299–2307. doi: 10.1016/0016-7037(91)90105-E
  • Zheng Y-F. Calculation of oxygen isotope fractionation in anhydrous silicate minerals. Geochim Cosmochim Acta. 1993;57:1079–1091. doi: 10.1016/0016-7037(93)90042-U
  • Zheng Y-F. Calculation of oxygen isotope fractionation in hydroxyl-bearing silicates. Earth Planet Sci Lett. 1993;120:247–263. doi: 10.1016/0012-821X(93)90243-3
  • Zheng Y-F. Oxygen isotope fractionations involving apatites: application to paleotemperature determination. Chem Geol. 1996;127:177–187. doi: 10.1016/0009-2541(95)00088-7
  • Zheng Y-F. Prediction of high-temperature oxygen isotope fractionation factors between mantle minerals. Phys Chem Mineral. 1997;24:356–364. doi: 10.1007/s002690050049
  • Zheng Y-F. Oxygen isotope fractionation between hydroxide minerals and water. Phys Chem Miner. 1998;25:213–221. doi: 10.1007/s002690050105
  • Zheng Y-F. Oxygen isotope fractionation in carbonate and sulfate minerals. Geochem J. 1999;33:109–126. doi: 10.2343/geochemj.33.109
  • Schütze H. Der Isotopenindex — eine Inkrementenmethode zur näherungsweisen Berechnung von Isotopenaustauschgleichgewichten zwischen kristallinen Substanzen. Chem Erde. 1980;39:321–334.
  • Kieffer SW. Thermodynamics and lattice vibration of minerals: 5 application to phase equilibria, isotopic fractionation, and high pressure thermodynamic properties. Rev Geophys Space Phys. 1982;20:827–849. doi: 10.1029/RG020i004p00827
  • Clayton RN, Goldsmith JR, Mayeda TK. Oxygen isotope fractionation in quartz, albite, anorthite and calcite. Geochim Cosmochim Acta. 1989;53:725–733. doi: 10.1016/0016-7037(89)90015-X
  • Muller O, Roy R. The major ternary structural families. Berlin: Springer; 1974.
  • Reeder RJ. Crystal chemistry of the rhombohedral carbonates. Rev Mineral. 1983;11:1–47.
  • Jaffe HW. Crystal chemistry and refractivity. Cambridge: Cambridge University Press; 1988.
  • Smyth JR, Bish DL. Crystal structure and cation sites of the rock-forming minerals. Boston, MA: Allen and Unwin; 1988.
  • Hattori K, Halas S. Calculation of oxygen isotope fractionation between uranium dioxide, uranium trioxide and water. Geochim Cosmochim Acta. 1982;46:1863–1868. doi: 10.1016/0016-7037(82)90124-7
  • Kharaka YK, Gunter WD, Aggarwal PK, Perkins BH, Debraal JD. SOLMINEQ.88: a computer program for geochemical modeling of water–rock interactions. USGS Water-Resources Investigations Report 88-4227; 1988.
  • Swart PK, Burns SJ, Leeder JJ. Fractionation of the stable isotopes of oxygen and carbon in carbon dioxide during the reaction of calcite with phosphoric acid as a function of temperature and technique. Chem Geol. 1991;86:89–96.
  • Böttcher ME. 18O/16O and 13C/12C fractionation during the reaction of carbonates with phosphoric acid: Effects of cationic substitution and reaction temperature. Isot Environ Health Stud. 1996;32:299–305. doi: 10.1080/10256019608036323
  • McCrea JM. On the isotopic chemistry of carbonates and a paleotemperature scale. J Chem Phys. 1950;18:849–857. doi: 10.1063/1.1747785
  • Craig H. Isotopic standards for carbon and oxygen and correction factors for mass spectrometric analysis of carbon dioxide. Geochim Cosmochim Acta. 1957;12:133–149. doi: 10.1016/0016-7037(57)90024-8
  • Friedman I, O'Neil JR. Compilation of stable isotope fractionation factors of geochemical interest. USGS Professional Paper: 440-KK; 1977.
  • Perry EC Jr, Tan FC. Significance of oxygen and carbon isotope variations in Early Precambrian cherts and carbonate rocks of Southern Africa. Geol Soc Am Bull. 1972;83:647–664. doi: 10.1130/0016-7606(1972)83[647:SOOACI]2.0.CO;2
  • Böttcher ME, Dietzel M. Metal-ion partitioning during low-temperature precipitation and dissolution of anhydrous carbonates and sulfates. Eur Mineral Union Notes Mineral. 2010;10:139–187.
  • O'Neil JR, Adami LH, Epstein S. Revised value for the 18O fractionation between CO2 and H2O at 25°C. J Res US Geol Surv. 1975;3:623–624.
  • Northrop DA, Clayton RN. Oxygen-isotope fractionations in systems containing dolomite. J Geol. 1966;74:174–195. doi: 10.1086/627153
  • Usdowski E. Reactions and equilibria in the system CO2-H2O and CaCO3-CO2-H2O (0–50°C). A review. Neues Jb Mineral Abh. 1982;144:148–171.
  • Lesniak PM, Sakai H. Carbon isotope fractionation between dissolved carbonate (CO3)2− and CO2 (g) at 25 and 40°C. Earth Planet Sci Lett. 1989;95:297–301. doi: 10.1016/0012-821X(89)90104-0
  • Halas S, Szaran J, Niezgoda H. Experimental determination of carbon isotope equilibrium fractionation between dissolved carbonate and carbon dioxide. Geochim Cosmochim Acta. 1997;61:2691–2695. doi: 10.1016/S0016-7037(97)00107-5
  • Zhou G-T, Zheng Y-F. Kinetic mechanism of oxygen isotope disequilibrium in precipitated witherite and aragonite at low temperatures: An experimental study. Geochim Cosmochim Acta. 2002;66:63–71. doi: 10.1016/S0016-7037(01)00746-3
  • Golyshev SI, Padalko NL, Pechenkin SA. Fractionation of stable oxygen and carbon isotopes in carbonate systems. Geochem Int. 1981;18:85–99.
  • Zhou G-T, Zheng Y-F. On the direction and magnitude of oxygen isotope fractionation between calcite and aragonite at thermodynamic equilibrium. Aquat Geochem. 2006;12:239–268. doi: 10.1007/s10498-005-5857-3
  • Baker PA, Burns SJ. Occurrence and formation of dolomite in organic-rich continental margin sediments. Bull Am Assoc Petrol Geol. 1985;69:1917–1930.
  • Warren J. Dolomite: occurrence, evolution and economically important associations. Earth Sci Rev. 2000;52:1–81. doi: 10.1016/S0012-8252(00)00022-2
  • Vasconcelos C, McKenzie JA, Bernasconi S, Grujic D, Tien AJ. Microbial mediation as a possible mechanism for natural dolomite formation at low temperature. Nature. 1995;377:220–222. doi: 10.1038/377220a0
  • Roberts JA, Kenward PA, Fowle DA, Goldstein RH, González LA, Moore DS. Surface chemistry allows for abiotic precipitation of dolomite at low temperature. Proc Natl Acad Sci USA. 2013;110:14540–14545. doi: 10.1073/pnas.1305403110
  • Xu J, Yan Ch, Zhang F, Konishi H, Xu H, Teng H. Testing the cation-hydration effect on the crystallization of Ca-Mg-CO3 systems. Proc Natl Acad Sci USA. 2013;110:17750–17755. doi: 10.1073/pnas.1307612110
  • Friedman I, Hall WE. Fractionation of 18O/16O between coexisting calcite and dolomite. J Geol. 1963;71:238–243. doi: 10.1086/626895
  • Degens ET, Epstein S. Oxygen and carbon isotope ratios in coexisting calcites and dolomites from recent and ancient sediments. Geochim Cosmochim Acta. 1964;28:23–44. doi: 10.1016/0016-7037(64)90053-5
  • Fritz P, Smith DG. The isotopic composition of secondary dolomites. Geochim Cosmochim Acta. 1970;34:1161–1173. doi: 10.1016/0016-7037(70)90056-6
  • Schmidt M, Xeflide S, Botz R, Mann S. Oxygen isotope fractionation during synthesis of CaMg-carbonate and implications for sedimentary dolomite formation. Geochim Cosmochim Acta. 2005;69:4665–4674. doi: 10.1016/j.gca.2005.06.025
  • Horita J. Oxygen and carbon isotope fractionation in the system dolomite–water–CO2 to elevated temperatures. Geochim Cosmochim Acta. 2014;129:111–124. doi: 10.1016/j.gca.2013.12.027
  • Tarutani T, Clayton RN, Mayeda TK. The effect of polymorphism and magnesium substitution on oxygen isotope fractionation between calcium carbonate and water. Geochim Cosmochim Acta. 1969;33:987–996. doi: 10.1016/0016-7037(69)90108-2
  • Aharon P. A stable-isotope study of magnesites from the rum jungle uranium field, Australia: implications for the origin of strata-bound massive magnesites. Chem Geol. 1988;69:127–145. doi: 10.1016/0009-2541(88)90164-7
  • Matthews A, Goldsmith JR, Clayton RN. On the mechanisms and kinetics of oxygen isotope exchange in quartz and feldspars at elevated temperatures and pressures. Geol Soc Am Bull. 1983;94:396–412. doi: 10.1130/0016-7606(1983)94<396:OTMAKO>2.0.CO;2
  • Zheng Y-F, Satir M, Metz P, Sharp ZD. Oxygen isotope exchange processes and disequilibrium between calcite and forsterite in an experimental C–O–H fluid. Geochim Cosmochim Acta. 1999;63:1781–1786. doi: 10.1016/S0016-7037(99)00127-1
  • Zheng Y-F, Satir M, Metz P. Oxygen isotope exchange and disequilibrium between calcite and tremolite in the absence and presence of an experimental C–O–H fluid. Contrib Mineral Petrol. 2004;146:683–695. doi: 10.1007/s00410-003-0528-0
  • Gaines AM. Protodolomite redefined. J Sed Petrol. 1977;47:543–546.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.