335
Views
33
CrossRef citations to date
0
Altmetric
Original Articles

Isotope hydrology and baseflow geochemistry in natural and human-altered watersheds in the Inland Pacific Northwest, USA

, , &
Pages 231-254 | Received 13 Jul 2014, Accepted 29 Nov 2014, Published online: 18 Feb 2015

References

  • Lackey RT [internet]. Providing ecosystems services for an additional 50+ million PNW residents: the challenge to natural resource and environmental agencies [Internet]. Oregon State University, USA [cited 2014 March 22]. Available from: http://fw.oregonstate.edu/system/files/u2937/2013p%20-%20Pacific%20Northwest%202100%20Project%20-%20Web%20Description%20-%202013.pdfhttp://fw.oregonstate.edu/system/files/u2937/2013p%20-%20Pacific%20Northwest%202100%20Project%20-%20Web%20Description%20-%202013.pdf
  • Callahan B, Miles E, Fluharty D. Policy implications of climate forecasts for water resources management in the Pacific Northwest. Policy Sci. 1999;32:269–293. doi: 10.1023/A:1004604805647
  • Miles EL, Snover AK, Hamlet AF, Callahan B, Fluharty D. Pacific Northwest regional assessment: the impacts of climate variability and climate change on the water resources of the Columbia River Basin. JAWRA. 2000;36:399–420.
  • Mote PW. Trends in snow water equivalent in the Pacific Northwest and their climatic causes. Geophys Res Lett. 2003;30:1601. Available from: http://ir.library.oregonstate.edu/xmlui/bitstream/handle/1957/18711/Mote_Geophys_Res_Lett_2003.pdf?sequence=1 doi: 10.1029/2003GL017258
  • Hamlet AF. Assessing water resources adaptive capacity to climate change impacts in the Pacific Northwest region of North America. Hydrol Earth Syst Sci. 2011;15:1427–1443. doi: 10.5194/hess-15-1427-2011
  • Chang H, Jung IW, Steele M, Gannett M. Spatial patterns of March and September streamflow trends in Pacific Northwest streams, 1958–2008. Geogr Anal. 2012;44:177–201. doi: 10.1111/j.1538-4632.2012.00847.x
  • Wu H, Kimball JS, Elsner MM, Mantua N, Adler R, Stanford J. Projected climate change impacts on the hydrology and temperature of Pacific Northwest rivers. Water Resour Res. 2012;48:W11530.
  • Sánchez-Murillo R, Brooks ES, Sampson L, Boll J, Wilhelm F. Ecohydrological analysis of steelhead (Oncorhynchus mykiss) habitat in an effluent dependent stream in the Pacific Northwest, USA. Ecohydrology. 2014;7:557–568. doi: 10.1002/eco.1376
  • Rudestam K. Loving water, resenting regulation: sense of place and water management in the Willamette watershed. Soc Natur Resour. 2014;27:20–35. doi: 10.1080/08941920.2013.840020
  • Berghuijs WR, Woods RA, Hrachowitz M. A precipitation shift from snow towards rain leads to a decrease in streamflow. Nat Clim Change. 2014;4:583–586. doi: 10.1038/nclimate2246
  • McCabe GJ, Clark MP. Trends and variability in snowmelt runoff in the Western United States. Hydrometeorology. 2005;6:476–482. doi: 10.1175/JHM428.1
  • van Kirk RW, Naman SW. Relative effects of climate and water use on base-flow trends in the lower Klamath basin. JAWRA. 2008;44:1032–1052.
  • Elsner MM, Cuo L, Voisin N, Deems JS, Hamlet AF, Vano JA, Mickelson K, Lee S, Lettenmaier DP. Implications of 21st century climate change for the hydrology of Washington State. Clim Change. 2010;102:225–260. doi: 10.1007/s10584-010-9855-0
  • Mayer TD. Controls of summer stream temperature in the Pacific Northwest. Hydrology. 2012;475:323–335. doi: 10.1016/j.jhydrol.2012.10.012
  • Mote PW, Salathé EP. Future climate in the Pacific Northwest. Clim Change. 2010;102:29–50. doi: 10.1007/s10584-010-9848-z
  • Larson KR, Keller CK, Larson PB, Allen-King RM. Water resources implications of 18O and 2H distributions in a basalt aquifer system. Groundwater. 2000;38:947–953. doi: 10.1111/j.1745-6584.2000.tb00695.x
  • Lyn B, Knobel L, Hall LF, DeWayne C, Green J. Development of a local meteoric water line for Southeastern Idaho, Western Wyoming, and South-central Montana. Idaho Falls (USA): U.S. Geological Survey Scientific Investigations Report 2004–5126. Prepared in cooperation with the U.S. Department of Energy; 2004.
  • Goodwin AJ. Oxygen-18 in surface and soil waters in a dry land agricultural setting, eastern Washington: flow processes and mean residence times at various watersheds scales [thesis]. Pullman (WA): Washington State University; 2006.
  • Koeniger P, Hubbart JA, Link T, Marshall JD. Isotopic variation of snow cover and streamflow in response to changes in canopy structure in a snow-dominated mountain catchment. Hydrol Process. 2008;22:557–566. doi: 10.1002/hyp.6967
  • Moravec BC, Keller KC, Smith JL, Allen-King RM, Goodwin AJ, Fairley JP, Larson PB. Oxygen-18 dynamics in precipitation and streamflow in a semi-arid agricultural watershed, Eastern Washington, USA. Hydrol Process. 2010;24:446–460.
  • Moxley N. Stable isotope analysis of surface water and precipitation in the Palouse Basin: hydrologic tracers of aquifer recharge [Thesis]. Pullman (WA): Washington State University; 2012.
  • Kendall C, McDonnell JJ, editors. Isotope tracers in catchment hydrology. Amsterdam: Elsevier; 1998.
  • Berden G, Peeters R, Meijer G. Cavity ring-down spectroscopy: experimental schemes and applications. Int Rev Phys Chem. 2010;19:565–607. doi: 10.1080/014423500750040627
  • Lis GP, Wassenaar LI, Hendry MJ. High-precision laser spectroscopy D/H and 18O/16O measurements of microliter natural water samples. Anal Chem. 2008;80:287–293. doi: 10.1021/ac701716q
  • Wen XF, Sun XM, Zhang SC, Yu GR, Sargent SD, Lee X. Continuous measurement of water vapor D/H and 18O/16O isotope ratios in the atmosphere. Hydrology. 2008;349:489–500. doi: 10.1016/j.jhydrol.2007.11.021
  • Gupta P, Noone D, Galewsky J, Sweeney C, Vaughn BH. Demonstration of high-precision continuous measurements of water vapor isotopologues in laboratory and remote field deployments using wavelength-scanned cavity ring-down spectroscopy (WS-CRDS) technology. Rapid Commun Mass Spectrom. 2009;23:2534–2542. doi: 10.1002/rcm.4100
  • Munksgaard NC, Wurster CM, Bass A, Bird MI. Extreme short-term stable isotope variability revealed by continuous rainwater analysis. Hydrol Process. 2012;26:3630–3634. doi: 10.1002/hyp.9505
  • Bernan ESF, Levin NE, Landais A, Li S, Owano T. Measurement of δ18O, δ17O, and 17O-excess in water by off-axis integrated cavity output spectroscopy and isotope ratio mass spectrometry. Anal Chem. 2013;85:10392–10398. doi: 10.1021/ac402366t
  • Koeniger P, Leibundgut C, Link T, Marshall J. Stable isotopes applied as water tracers in column and field studies. Org Geochem. 2010;41:31–40. doi: 10.1016/j.orggeochem.2009.07.006
  • Frederickson GC, Criss RE. Isotope hydrology and residence times of the unimpounded Meramec River Basin, Missouri. Chem Geol. 1999;157:303–317. doi: 10.1016/S0009-2541(99)00008-X
  • McGuire KJ, DeWalle DR, Gburek DJ. Evaluation of mean residence in subsurface waters using oxygen-18 fluctuations during drought conditions in the mid-Appalachians. Hydrology. 2002;261:132–149. doi: 10.1016/S0022-1694(02)00006-9
  • Rodgers P, Soulsby C, Waldron S, Tezlaff D. Using stables isotopes tracers to assess hydrological flow paths, residence times and landscape influence in a nested mesoscale catchment. Hydrol Earth Syst Sci. 2005;9:139–155. doi: 10.5194/hess-9-139-2005
  • Uchida T, McDonell JJ, Asano Y. Functional intercomparison of hillslopes and small catchments by examining water source, flowpath and mean residence time. Hydrology. 2006;327:627–642. doi: 10.1016/j.jhydrol.2006.02.037
  • Tezlaff D, Soulsby C, Hrachowitz M, Speed M. Relative influence of upland and lowland headwaters on the isotope hydrology and transit time of larger catchments. Hydrology. 2011;400:438–447. doi: 10.1016/j.jhydrol.2011.01.053
  • Asano Y, Uchida T. Flow path depth is the main controller of mean base flow transit times in a mountainous catchment. Water Resour Res. 2012;48:W03512. doi: 10.1029/2011WR010906
  • Dansgaard W. Stable isotopes in precipitation. Tellus. 1964;16:436–468. doi: 10.1111/j.2153-3490.1964.tb00181.x
  • Merlivat L, Jouzel J. Global climatic interpretation of the deuterium–oxygen 18 relationship for precipitation. Geophys Res. 1979;84:4918–4922. doi: 10.1029/JC084iC08p05029
  • Rozanski K, Araguás-Araguás LJ, Gonfiantini R. Relation between long-term trends of oxygen-18 isotope composition of precipitation and climate. Science. 1992;258:981–985. doi: 10.1126/science.258.5084.981
  • Araguás-Araguás L, Froehlich K, Rozanski K. Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture. Hydrol Process. 2000;14:1341–1355. doi: 10.1002/1099-1085(20000615)14:8<1341::AID-HYP983>3.0.CO;2-Z
  • Bowen G, Revenaugh J. Interpolating the isotopic composition of modern meteoric precipitation. Water Resour Res. 2003;39:1299. Available from: http://onlinelibrary.wiley.com/doi/10.1029/2003WR002086/abstracthttp://onlinelibrary.wiley.com/doi/10.1029/2003WR002086/abstract doi: 10.1029/2003WR002086
  • Aggarwal PK, Alduchov OA, Froehlich KO, Araguas-Araguas LJ, Sturchio NC, Kurita N. Stable isotopes in global precipitation: a unified interpretation based on atmospheric moisture residence time. Geophys Res Lett. 2012;39:L11705.
  • Sánchez-Murillo R, Esquivel-Hernández G, Welsh K, Brooks ES, Boll J, Alfaro-Solís R, Valdés-González J. Spatial and temporal variation of stable isotopes in precipitation across Costa Rica: an analysis of historic GNIP records. Open J Mod Hydrol. 2013;3:226–240. doi: 10.4236/ojmh.2013.34027
  • Craig H. Isotopic variations in meteoric waters. Science. 1961;133:1702–1703. doi: 10.1126/science.133.3465.1702
  • Jouzel J, Hoffmann G, Koster RD, Masson V. Water isotopes in precipitation: data/model comparison for present day and past climates. Quat Sci Rev. 2000;19:363–379. doi: 10.1016/S0277-3791(99)00069-4
  • Cappa CD, Hendricks MB, DePaolo DJ, Cohen RC. Isotopic fractionation of water during evaporation. Geophys Res. 2003;108:4525–4534. doi: 10.1029/2003JD003597
  • Birkel C, Soulsby C, Tezlaff D, Dunn S, Spezia L. High-frequency storm event isotope sampling reveals time-variant transit time distributions and influence of diurnal cycles. Hydrol Process. 2012;26:308–316. doi: 10.1002/hyp.8210
  • McGlynn B, McDonnel JJ, Brammer DD. A review of the evolving perceptual model of hillslope flowpaths at the Maimai catchments, New Zealand. Hydrology. 2002;257:1–26. doi: 10.1016/S0022-1694(01)00559-5
  • Tezlaff D, Soulsby C. Towards simple approaches for mean residence time estimation in ungauged basins using tracers and soil distributions. Hydrology. 2008;363:60–74. doi: 10.1016/j.jhydrol.2008.10.001
  • Speed M, Tezlaff D, Soulsby C, Hrachowitz M, Waldron S. Isotopic and geochemical tracers reveal similarities in transit times in contrasting mesoscale catchments. Hydrol Process. 2010;24:1211–1224. doi: 10.1002/hyp.7593
  • Wassenaar LI, Athanasopoulos P, Hendry MJ. Isotope hydrology of precipitation, surface and ground waters in the Okanagan Valley, British Columbia, Canada. Hydrology. 2011;411:37–48. doi: 10.1016/j.jhydrol.2011.09.032
  • Rozanski K, Araguas-Araguas LJ, Gonfiantini R. Isotopic patterns in modern global precipitation. In: Swart PK, Lohmann KC, McKenzie J Savin S, editors. Climate change in continental isotopic records. No 67, Geophysical Monograph; Washington (USA): American Geophysics Union; 1993.
  • Froehlich K, Gibson JJ, Aggarwal P. Deuterium excess in precipitation and its climatological significance. Study of environmental change using isotope techniques. C&S Papers Series 13/P. Vienna (Austria): International Atomic Energy Agency; 2002.
  • Dunn SM, McDonnell JJ, Vaché KB. Factors influencing the residence time of catchment waters: a virtual experiment approach. Water Resour Res. 2007;43:W06408. doi: 10.1029/2006WR005393
  • Soulsby C, Tetzlaff D, Hrachowitz M. Tracers and transit times: windows for viewing catchment scale storage? Hydrol Process. 2009;23:3503–3507. doi: 10.1002/hyp.7501
  • Stewart MK, Morgenstern U, McDonnell JJ, Pfister L. The ‘hidden streamflow’ challenge in catchment hydrology: a call to action for stream water transit time analysis. Hydrol Process. 2012;26:2061–2066. doi: 10.1002/hyp.9262
  • Kim S, Jung S. Estimation of mean water transit time on a steep hillslope in South Korea using soil moisture measurements and deuterium excess. Hydrol Process. 2014;28:1844–1857. doi: 10.1002/hyp.9722
  • Godsey SE, Aas W, Clair TA, de Wit HA, Fernandez IJ, Kahl SJ, Malcolm IA, Neal C, Neal M, Nelson SJ, Norton SA, Palucis MC, Skjelkvåle BL, Soulsby C, Tetzlaff D, Kirchner JW. Generality of fractal 1/f scaling in catchment tracer time series, and its implications for catchment travel time distributions. Hydrol Process. 2010;24:1660–1671. doi: 10.1002/hyp.7677
  • Hrachowitz H, Soulsby C, Tetzlaff D, Malcolm A, Schoups G. Gamma distribution models for transit time estimation in catchments: physical interpretation of parameters and implications for time-variant transit time assessment. Water Resour Res. 2010;46:W10536. doi: 10.1029/2010WR009148
  • van der Velde Torfs PJJF, van der Zee SEATM, Uijlenhoet R. Quantifying catchment-scale mixing and its effect on time-varying travel time distributions. Water Resour Res. 2012;48:W06536.
  • Hrachowitz M, Savenije H, Bogaard TA, Tetzlaff D, Soulsby C. What can flux tracking teach us about water age distribution patterns and their temporal dynamics? Hydrol Earth Syst Sci. 2013;17:533–564. doi: 10.5194/hess-17-533-2013
  • Asano Y, Uchida T, Ohte N. Residence times and flow paths of water in steep unchannelled catchments, Tanakami, Japan. Hydrology. 2002;261:173–192. doi: 10.1016/S0022-1694(02)00005-7
  • Broxton PD, Troch PA, Lyon SW. On the role of aspect to quantify water transit times in small mountainous catchments. Water Resour Res. 2009;45:W08427. doi: 10.1029/2008WR007438
  • Soulsby C, Tetzlaff D, Rodgers P, Dunn SM, Waldron S. Runoff processes, stream water residence times and controlling landscape characteristics in a mesoscale catchment: an initial evaluation. Hydrology. 2006;325:197–221. doi: 10.1016/j.jhydrol.2005.10.024
  • McGuire KJ, McDonnell JJ, Weiler M, Kendall C, McGlynn BL, Welker JM, Seibert J. The role of topography on catchment-scale water residence time. Water Resour Res. 2005;41:W05002. doi: 10.1029/2004WR003657
  • Viville D, Ladouche B, Bariac T. Isotope hydrological study of mean transit time in the granitic Strengbach catchment (Vosges massif, France): application of the FlowPC model with modified input function. Hydrol Process. 2006;20:1737–1751. doi: 10.1002/hyp.5950
  • Katsuyama M, Tani M, Nishimoto S. Connection between streamwater mean residence time and bedrock groundwater recharge/discharge dynamics in weathered granite catchments. Hydrol Process. 2010;24:2287–2299. doi: 10.1002/hyp.7741
  • Capell R, Tetzlaff D, Hartley AJ, Soulsby C. Linking metrics of hydrological function and transit times to landscape controls in a heterogeneous mesoscale catchment. Hydrol Process. 2012;26:405–420. doi: 10.1002/hyp.8139
  • Heidbüchel I, Troch PA, Lyon SW. Separating physical and meteorological controls of variable transit times in zero-order catchments. Water Resour Res. 2013;49:7644–7657. doi: 10.1002/2012WR013149
  • Maloszewski P, Zuber A. Determining the turnover time of groundwater systems with the aid of environmental tracers, I. Models and their applicability. Hydrology. 1982;57:207–231. doi: 10.1016/0022-1694(82)90147-0
  • Maloszewski P, Zuber A. Lumped parameter models for the interpretation of environmental tracer data. Manual on mathematical models in isotope hydrology. IAEA-TECDOC 910. Vienna (Austria): IAEA; 1996.
  • McGuire KJ, McDonell JJ. A review and evaluation of catchment transit time modeling. Hydrology. 2006;330:543–563. doi: 10.1016/j.jhydrol.2006.04.020
  • Zuber A. Mathematical models for the interpretation of environmental radioisotopes in groundwater systems. In: Fontes PFJC, editor. Handbook of environmental isotope geochemistry, Vol. 2. Amsterdam: Elsevier; 1986. p. 9–58.
  • Hall M, Young DL, Walker DJ. Agriculture in the Palouse: a portrait of diversity. Moscow, Idaho: University of Idaho, Agricultural Communications, Bulletin 794; 1999.
  • Brooks ES, Boll J, McDaniel PA. Hydropedology in seasonally dry landscapes: the Palouse region of the Pacific Northwest USA. In: Lin, H, editor. Hydropedology: synergistic integration of soil science and hydrology. Amsterdam: Academic Press, Elsevier B.V.; 2012. p. 329–350.
  • Murray J, O'Green AT, McDaniel PA. Development of a GIS database for ground-water recharge assessment of the Palouse Basin. Soil Sci. 2003;168:759–768. doi: 10.1097/01.ss.0000100474.96182.5f
  • Palouse Basin Aquifer Committee (PBAC). Palouse ground water basin water use report. Pullman-Moscow Area (USA); 2012 [cited 2014 April 1]. Available from: http://www.webpages.uidaho.edu/pbac/http://www.webpages.uidaho.edu/pbac/
  • Mitchell V, Reed L, Larsen J. Geology of northern Idaho and the Silver Valley. Idaho Geological Survey. Idaho State University [cited 2014 January 15]. Available from: http://geology.isu.edu/Digital_Geology_Idaho/Module7/mod7.htm
  • Horowitz AJ, Elrick KA, Cook RB. Effect of mining and related activities on the sediment trace element geochemistry of Lake Coeur D'Alene, Idaho, USA. Part I: Surface sediments. Hydrol Process. 1993;7:403–423. doi: 10.1002/hyp.3360070406
  • Silver Valley Natural Resources Trustees. Canyon Creek response actions 1995–1999. Idaho: Kellog; 2000.
  • Dougthy PT, Price RA. Tectonic evolution of the Priest River complex, northern Idaho and Washington – a reappraisal of the Newport fault with new insights on metamorphic core complex formation. Tectonics. 1999;18:375–393. doi: 10.1029/1998TC900029
  • DeWalle DR, Edwards PJ, Swistock BR, Aravena R, Drimie RJ. Seasonal isotope hydrology of three Appalachian forest catchments. Hydrol Process. 1997;11:1895–1906. doi: 10.1002/(SICI)1099-1085(199712)11:15<1895::AID-HYP538>3.0.CO;2-#
  • McGuire KJ. Water residence time and runoff generation in the western Cascades of Oregon [dissertation]. Corvallis, Oregon: Oregon State University; 2004.
  • Maloszewski P. Lumped-parameter models as a tool for determining the hydrological parameters of some groundwater systems based on isotope data. Tracers and Modeling in Hydrogeology. Proceedings of the TraM'2000 Conference held at Liège; 2000 May; Belgium. IAHS; 2000.
  • Zuber A, Weise SM, Motyka J, Osenbrück K, Różański K. Age and flow pattern of groundwater in a Jurassic limestone aquifer and related Tertiary sands derived from combined isotope, noble gas and chemical data. Hydrology. 2004;286:87–112. doi: 10.1016/j.jhydrol.2003.09.004
  • Katz BG, Chelette AR, Pratt TR. Use of chemical and isotopic tracers to assess nitrate contamination and ground-water age, Woodville Karst Plain, USA. Hydrology. 2004;289:36–61. doi: 10.1016/j.jhydrol.2003.11.001
  • Einsiedl F, Maloszewski F, Stichler W. Multiple isotope approach to the determination of the natural attenuation potential of a high-alpine karst system. Hydrology. 2009;365:113–121. doi: 10.1016/j.jhydrol.2008.11.042
  • Stumpp C, Maloszewski P, Stichler W, Fank J. Environmental isotope (δ18O) and hydrological data to assess water flow in unsaturated soils planted with different crops: case study lysimeter station “Wagna” (Austria). Hydrology. 2009;369:198–208. doi: 10.1016/j.jhydrol.2009.02.047
  • Willmot CJ. On the validation of models. Phys Geogr. 1981;2:184–194.
  • Legates DR, McCabe GJ Jr. Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour Res. 1999;35:233–241. doi: 10.1029/1998WR900018
  • USEPA. Methods for the Chemical Analysis of Water and Wastes (MCAWW) (EPA/600/4-79/020) EPA Method 310.1: alkalinity; 1978. Available from: https://www.nemi.gov/methods/method_summary/5230/
  • USEPA. Determination of inorganic ions by ion chromatography. EPA Method 300. Revision 2.1; 1993. Available from: http://water.epa.gov/scitech/methods/cwa/bioindicators/upload/2007_07_10_methods_method_300_0.pdf
  • USEPA. Trace elements in water, solids, and biosolids by inductively coupled plasma-atomic emission spectroscopy. EPA Method 200.7. Revision 4.4; 2001. Available from: http://water.epa.gov/scitech/methods/cwa/bioindicators/upload/2007_07_10_methods_method_200_7.pdf
  • USEPA. Trace elements in water, solids, and biosolids by inductively coupled plasma-mass spectroscopy. EPA Method 200.8. Revision 5.4; 2007. Available from: http://water.epa.gov/scitech/methods/cwa/bioindicators/upload/2007_07_10_methods_method_200_8.pdf
  • GNIP. Global Network of Isotopes in Precipitation. International Atomic Energy Agency [cited 2014 January 15]; 2006. Available from: http://wwwnaweb.iaea.org/napc/ih/IHS_resources_gnip.htmlhttp://wwwnaweb.iaea.org/napc/ih/IHS_resources_gnip.html
  • Peng H, Mayer B, Harris S, Krouse HR. A 10-yr record of stable isotope ratios of hydrogen and oxygen in precipitation at Calgary, Alberta, Canada. Tellus. 2004;56B:147–159. doi: 10.1111/j.1600-0889.2004.00094.x
  • Miyake Y, Matsubaya O, Nishihara C. An isotopic study on meteoric precipitation. Pap Meteorol Geophys. 1968;19:243–266.
  • Steward MK. Stable isotope fractionation due to evaporation and isotopic exchange of falling water drops: applications to the atmospheric processes and evaporation of lakes. Geophys Res. 1975;80:1133–1146. doi: 10.1029/JC080i009p01133
  • Jouzel J. Isotopes in cloud physics: multiphase and multistage condensation processes. In: Fritz BP, Fontes JC, editors. Handbook of environmental isotope geochemistry, Vol. 2: the terrestrial environment. Amsterdam: Elsevier; 1986. p. 117–152.
  • Jouzel J, Merlivat L. Deuterium and oxygen-18 in precipitation: modelling of the isotopic effect during snow formation. Geophys Res. 1984;89:11749–11757. doi: 10.1029/JD089iD07p11749
  • Krause P, Boyle DP, Bäse F. Comparison of different efficiency criteria for hydrological model assessment. Adv Geosci. 2005;5:89–97. doi: 10.5194/adgeo-5-89-2005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.