826
Views
61
CrossRef citations to date
0
Altmetric
Review article

Multi-factorial in vivo stable isotope fractionation: causes, correlations, consequences and applications

, &
Pages 155-199 | Received 24 Apr 2014, Accepted 06 Jan 2015, Published online: 20 Apr 2015

References

  • Cook PF, editor. Enzyme mechanisms from isotope effects. Boca Raton (FL): CRC Press; 1991.
  • Hayes JM. Isotopic order, biogeochemical processes, and earth history. Geochim Cosmochim Acta. 2004;68:1691–1700. doi: 10.1016/j.gca.2003.10.023
  • Kelly S, Heaton K, Hoogewerff J. Tracing the geographical origin of food: the application of multi-element and multi-isotope analysis. Trends Food Sci Technol. 2005;16:555–567. doi: 10.1016/j.tifs.2005.08.008
  • Nakamura K, Schoeller DA, Winkler FJ, Schmidt H-L. Geographical variations in the carbon isotope composition of the diet and hair in contemporary man. Biomed Mass Spectrom. 1982;9:390–394. doi: 10.1002/bms.1200090906
  • Michener RH, Kaufman L. Stable isotope ratios as tracers in marine food webs: an update. In: Michener R, Lajtha K, editors. Stable isotopes in ecology and environmental science. 2nd ed. Malden: Blackwell Publishing Ltd.; 2008. p. 238–282.
  • Pollard AM. Archaeological reconstruction using stable isotopes. In: Griffiths H, editor. Stable isotopes, integration of biological, ecological and geochemical processes. Oxford: BIOS Scientific Publishers; 1998. p. 285–301.
  • Richards MP, Hedges REM. Stable isotope evidence for similarities in the types of marine foods used by late Mesolithic humans at sites along the Atlantic coast of Europe. J Archaeol Sci. 1999;26:717–722. doi: 10.1006/jasc.1998.0387
  • Dobberstein RC, Collins MJ, Craig OE, Taylor G, Penkman KEH, Ritz-Timme S. Archaeological collagen: why worry about collagen diagenesis? Archaeol Anthropol Sci. 2009;1:31–42. doi: 10.1007/s12520-009-0002-7
  • Fantle MS, Dittel AI, Schwalm SM, Epifanio CE, Fogel ML. A food web analysis of the juvenile blue crab, Callinectes sapidus, using stable isotopes in whole animals and individual amino acids. Oecologia. 1999;120:416–426. doi: 10.1007/s004420050874
  • Farquhar GD, O'Leary MH, Berry JA. On the relationship between carbon isotope discrimination and the intracellular carbon dioxide concentration in leaves. Austr J Plant Physiol. 1982;9:121–137. doi: 10.1071/PP9820121
  • Schmidt H-L, Rossmann A, Rummel S, Tanz N. Stable isotope analysis for meat authenticity and origin check. In: Nollet LML, Toldrá F, editors. Handbook of muscle foods analysis. Boca Raton (FL): CRC Press; 2009. p. 767–787.
  • Lee-Thorp JA, Sealy JC, van der Merwe NJ. Stable carbon isotope ratio differences between bone collagen and bone apatite, and their relationship to diet. J Archaeol Sci. 1989;16:585–599. doi: 10.1016/0305-4403(89)90024-1
  • Kodina LA. Carbon isotope fractionation in various forms of biogenic organic matter: I. Partitioning of carbon isotopes between the main polymers of higher plant biomass. Geochem Int. 2010;48:1157–1165. doi: 10.1134/S0016702910120013
  • Keppler F, Harper DB, Kalin RM, Meier-Augenstein W, Farmer N, Davis S, Schmidt H-L, Brown DM, Hamilton JTG. Stable hydrogen isotope ratios of lignin methoxyl groups as a paleoclimate proxy and constraint of the geographical origin of wood. New Phytol. 2007;176:600–609. doi: 10.1111/j.1469-8137.2007.02213.x
  • Tanz N, Werner RA, Eisenreich W, Schmidt H-L. Assessment of enzymatic methods in the δ18O value determination of the L-tyrosine p-hydroxy group for proof of illegal meat and bone meal feeding to cattle. J Agric Food Chem. 2011;59:9475–9483. doi: 10.1021/jf201217r
  • Galimov EM. Biological fractionation of isotopes. New York: Academic Press; 1985.
  • Schmidt H-L. Fundamentals and systematics of the non-statistical distributions of isotopes in natural compounds. Naturwissenschaften. 2003;90:537–552; Corrections. Naturwissenschaften. 2004;91:148. doi: 10.1007/s00114-003-0485-5
  • Werner RA, Schmidt H-L. The in vivo nitrogen isotope discrimination among organic plant compounds. Phytochemistry. 2002;61:465–484. doi: 10.1016/S0031-9422(02)00204-2
  • Gauthier PPG, Lamothe M, Mahé A, Molero G, Nogués S, Hodges M, Tcherkez G. Metabolic origin of δ15N values in nitrogenous compounds from Brassica napus L. leaves. Plant Cell Environ. 2013;36:128–137. doi: 10.1111/j.1365-3040.2012.02561.x
  • Hobbie EA, Werner RA. Intramolecular, compound-specific, and bulk carbon isotope patterns in C3 and C4 plants: a review and synthesis. New Phytol. 2004;161:371–385. Errata. New Phytol. 2004;162, 240. doi: 10.1111/j.1469-8137.2004.00970.x
  • Krumbiegel P. Isotopieeffekte. WTB Wissenschaftliche Taschenbücher, Band 77. Berlin: Akademie-Verlag; Oxford: Pergamon Press; Braunschweig: Vieweg + Sohn; 1970.
  • Lehmann M, Siegenthaler U. Equilibrium oxygen- and hydrogen-isotope fractionation between ice and water. J Glaciol. 1991;37:23–26.
  • Wada E, Ando T, Kumazawa K. Biodiversity of stable isotope ratios. In: Wada E, Yoneyama T, Minagawa M, Ando T, Fry BD, editors. Stable isotopes in the biosphere. Kyoto: University Press; 1995. p. 7–14.
  • Ariz I, Cruz C, Moran JF, González-Moro MB, García-Olaverri C, González-Murua C, Martins-Loução MA, Aparicio-Tejo PM. Depletion of the heaviest stable N isotope is associated with NH4+/NH3 toxicity in NH4+-fed plants. BMC Plant Biol. 2011;11:83–95. doi: 10.1186/1471-2229-11-83
  • Chenery CA, Pashley V, Lamb AL, Sloane HJ, Evans JA. The oxygen isotope relationship between the phosphate and structural carbonate fractions of human bioapatite. Rapid Commun Mass Spectrom. 2012;26:309–319. doi: 10.1002/rcm.5331
  • Deuser WG, Degens ET. Carbon isotope fractionation in the system CO2(gas)–CO2(aqueous)–HCO3− (aqueous). Nature. 1967;215:1033–1035. doi: 10.1038/2151033a0
  • Schmidt H-L, Werner RA, Rossmann A. 18O Pattern and biosynthesis of natural plant products. Phytochemistry. 2001;58:9–32. doi: 10.1016/S0031-9422(01)00017-6
  • Van Stempvoort DR, Krouse HR. Controls of δ18O in sulfate. Review of experimental data and application to specific environments. In: Alpers CN, Blowes DW, editors. Environmental geochemistry of sulfide oxidation, ACS Symposium Series 550. Washington (DC): American Chemical Society; 1993. p. 446–480.
  • Blake RE, O'Neil JR, Surkov AV. Biogeochemical cycling of phosphorous: insights from oxygen isotope effects of phosphoenzymes. Am J Sci. 2005;305:596–620. doi: 10.2475/ajs.305.6-8.596
  • Kohn MJ. Predicting animal δ18O: accounting for diet and physiological adaptation. Geochim Cosmochim Acta. 1996;60:4811–4829. doi: 10.1016/S0016-7037(96)00240-2
  • O'Leary MH. Measurement of the isotope fractionation associated with diffusion of carbon dioxide in aqueous solution. J Phys Chem. 1984;88:823–825. doi: 10.1021/j150648a041
  • Rishavy MA, Cleland WW. 13C, 15N, and 18O equilibrium isotope effects and fractionation factors. Can J Chem. 1999;77:967–977.
  • Schmidt H-L, Werner RA, Eisenreich W. Systematics of 2H patterns in natural compounds and its importance for the elucidation of biosynthetic pathways. Phytochem Rev. 2003;2:61–85. doi: 10.1023/B:PHYT.0000004185.92648.ae
  • Yoshida N, Mizutani Y. Preparation of carbon dioxide for oxygen-18 determination of water by use of a plastic syringe. Anal Chem. 1986;58:1273–1275. doi: 10.1021/ac00297a071
  • Kaiser AS. Dissolved oxygen dynamics in the Dunnville Marsh of the Grand River, Ontario, Canada [MSc Thesis]. Waterloo: University of Waterloo; 2009.
  • Craig H. Isotopic variations in meteoric waters. Science. 1961;133:1702–1703. doi: 10.1126/science.133.3465.1702
  • White JWC. Stable hydrogen isotopes in plants: a review of current theory and some potential applications. In: Rundel PW, Ehleringer JR, Nagy KS, editors. Stable isotopes in ecological research, Vol. 68. New York: Springer; 1989. p. 142–160.
  • Barbour MM. Stable oxygen isotope composition of plant tissue: a review. Funct Plant Biol. 2007;34:83–94. doi: 10.1071/FP06228
  • Podlesak DW, Bowen GJ, O'Grady S, Cerling TE, Ehleringer JR. δ2H and δ18O of human body water: a GIS model to distinguish residents from non-residents in the contiguous USA. Isotopes Environ Health Stud. 2012;48:259–279. doi: 10.1080/10256016.2012.644283
  • Krivachy (Tanz) N, Rossmann A, Schmidt H-L. Potentials and caveats with oxygen and sulfur stable isotope analyses in authenticity and origin checks of food and food commodities. Food Control. 2015;48:143–150. doi: 10.1016/j.foodcont.2014.06.002
  • Kreuzer-Martin HW, Ehleringer JR, Hegg EL. Oxygen isotopes indicate most intracellular water in log-phase Escherichia coli is derived from metabolism. Proc Natl Acad Sci USA. 2005;102:17337–17341. doi: 10.1073/pnas.0506531102
  • Coplen TB, Hopple JA, Böhlke JK, Peiser HS, Rieder SE, Krouse HR, Rosman KJR, Ding T, Vocke RD, Révész KM, Lamberty A, Taylor PDB, De Bièvre P. Compilation of minimum and maximum isotope ratios of selected elements in naturally occurring terrestrial materials and reagents. U.S. Geological Survey Water-Resources Investigations Report 01-4222, 2002. p. 36–44. Available from: http://pubs.usgs.gov/wri/wri014222/.
  • Urey HC, Greiff LJ. Isotopic exchange equilibria. J Am Chem Soc. 1935;57:321–327. doi: 10.1021/ja01305a026
  • Keeling RF. The atmospheric oxygen cycle: the oxygen isotopes of atmospheric CO2 and O2 and the O2/N2 ratio. Rev Geophys Suppl July 1995, US National Report to International Union of Geodesy and Geophysics 1991–1994; 1995. p. 1253–1262.
  • Byrn M, Calvin M. Oxygen-18 exchange reactions of aldehydes and ketones. J Am Chem Soc. 1966;88:1916–1922. doi: 10.1021/ja00961a013
  • Sternberg LSLO, DeNiro MJD. Biogeochemical implications of the isotopic equilibrium fractionation factor between the oxygen atoms of acetone and water. Geochim Cosmochim Acta. 1983;47:2271–2274. doi: 10.1016/0016-7037(83)90049-2
  • Sternberg LSL. Oxygen and hydrogen isotope measurements in plant cellulose: mechanism and applications. In Rundel PW, Ehleringer JR, Nagy KA, editors. Stable isotopes in ecological research, Vol. 68. New York: Springer; 1989. p. 124–141.
  • Sternberg L, Pinzon ML, Anderson WT, Jahren AH. Variation in oxygen isotope fractionation during cellulose synthesis: intramolecular and biosynthetic effects. Plant Cell Environ. 2006;29:1881–1889. doi: 10.1111/j.1365-3040.2006.01564.x
  • Sternberg LSLO. Oxygen stable isotope ratios of tree-ring cellulose: the next phase of understanding. New Phytol. 2009;181:553–562. doi: 10.1111/j.1469-8137.2008.02661.x
  • Sternberg LSL, Vendramini Ellsworth PF. Divergent biochemical fractionation, not convergent temperature, explains cellulose oxygen isotope enrichment across latitudes. PloS One. 2011;6:e28040 (7 p). doi: 10.1371/journal.pone.0028040
  • Waterhouse JS, Cheng S, Juchelka D, Loader NJ, McCarroll D, Switsur VR, Gautam L. Position-specific measurement of oxygen isotope ratios in cellulose: isotopic exchange during heterotrophic cellulose synthesis. Geochim Cosmochim Acta. 2013;112:178–191. doi: 10.1016/j.gca.2013.02.021
  • Bonhoeffer KF. Reaktionen mit schwerem Wasserstoff. Z Elektrochem. 1934;40:469–474.
  • Estep MLF, Hoering TC. The stability of organically bonded hydrogen atoms in microalgae toward isotopic exchange with water. Washington: Carnegie Institution of Washington Year Book 78; 1979. p. 652–655.
  • Horita J, Ueda A, Mizukami K, Takatori I. Automatic δD and δ18O analyses of multi-water samples using H2- and CO2-equilibration methods with a common equilibration set-up. Appl Radiat Isot. 1989;40:801–805. doi: 10.1016/0883-2889(89)90100-7
  • Craig H. Measurement of oxygen isotope paleotemperatures. In: Tongiorgi E, editor. Stable isotopes in oceanographic studies and paleotemperatures. Pisa: CNR Lab. Geol. Nucl.; 1965. p. 161–182.
  • Beck WC, Grossman EL, Morse JW. Experimental studies of oxygen isotope fractionation in the carbonic acid system at 15°, 25°, and 40°C. Geochim Cosmochim Acta. 2005;69:3493–3503. doi: 10.1016/j.gca.2005.02.003
  • Ghosh P, Brand WA. Stable isotope ratio mass spectrometry in global climate change research. Int J Mass Spectrom. 2003;228:1–33. doi: 10.1016/S1387-3806(03)00289-6
  • Eiler JM. Paleoclimate reconstruction using carbonate clumped isotope thermometry. Quat Sci Rev. 2011;30:3575–3588. doi: 10.1016/j.quascirev.2011.09.001
  • O'Leary MH, Osmond CB. Diffusional contribution to carbon isotope fractionation during dark CO2 fixation in CAM plants. Plant Physiol. 1980;66:931–934. doi: 10.1104/pp.66.5.931
  • Amberger A, Schmidt H-L. Natürliche Isotopengehalte von Nitrat als Indikatoren für dessen Herkunft. Geochim Cosmochim Acta. 1987;51:2699–2705. doi: 10.1016/0016-7037(87)90150-5
  • Schmidt H-L, Voerkelius S, Amberger A. Nitrogen and oxygen isotopes as indicators for nitrification and denitrification. In: Matthess G, Frimmel FH, Hirsch P, Schulz HD, Usdowski E, editors. Progress in hydrogeochemistry. Berlin: Springer; 1992. p. 212–219.
  • Nagakawa F, Suzuki A, Daita S, Ohyama T, Komatsu DD, Tsunogai U. Tracing atmospheric nitrate in groundwater using triple oxygen isotopes: evaluation based on bottled drinking water. Biogeosciences. 2013;10:3547–3558. doi: 10.5194/bg-10-3547-2013
  • Johnson MS, Feilberg KL, von Hessberg P, Nielsen OJ. Isotopic processes in atmospheric chemistry. Chem Soc Rev. 2002;31:313–323. doi: 10.1039/b108011n
  • Brenninkmeijer CAM, Janssen C, Kaiser J, Röckmann T, Rhee TS, Assonov SS. Isotope effects in the chemistry of atmospheric trace compounds. Chem Rev. 2003;103:5125–5162. doi: 10.1021/cr020644k
  • Thiemens MH. History and applications of mass-independent isotope effects. Ann Rev Earth Planet Sci. 2006;34:217–262. doi: 10.1146/annurev.earth.34.031405.125026
  • Kool DM, Wrage N, Oenema O, Harris D, Van Groenigen JW. The 18O signature of biogenic nitrous oxide is determined by O exchange with water. Rapid Commun Mass Spectrom. 2009;23:104–108. doi: 10.1002/rcm.3859
  • Kool DM, Wrage N, Oenema O, Dolfing J, Van Groenigen JW. Oxygen exchange between (de)nitrification intermediates and H2O and its implications for source determination of NO3− and N2O: a review. Rapid Commun Mass Spectrom. 2007;21:3569–3578. doi: 10.1002/rcm.3249
  • Xue D, Botte J, De Baets B, Accoe F, Nestler A, Taylor P, Van Cleemput O, Berglund M, Boeckx P. Present limitations and future prospects of stable isotope methods for nitrate source identification in surface- and groundwater. Water Res. 2009;43:1159–1170. doi: 10.1016/j.watres.2008.12.048
  • Schmidt H-L, Werner RA, Yoshida N, Well R. Is the isotopic composition of nitrous oxide an indicator for its origin from nitrification or denitrification? A theoretical approach from referred data and microbiological and enzyme kinetic aspects. Rapid Commun Mass Spectrom. 2004;18:2036–2040.
  • Granger J, Sigman DM, Needoba JA, Harrison PJ. Coupled nitrogen and oxygen isotope fractionation of nitrate during assimilation by cultures of marine phytoplankton. Limnol Oceanogr. 2004;49:1763–1773. doi: 10.4319/lo.2004.49.5.1763
  • Tcherkez G, Farquhar GD. Isotopic fractionation by plant nitrate reductase, twenty years later. Funct Plant Biol. 2006;33:531–537. doi: 10.1071/FP05284
  • Casciotti KL, Böhlke JK, McIlvin MR, Mroczkowski SJ, Hannon JE. Oxygen isotopes in nitrite: analysis, calibration, and equilibration. Anal Chem. 2007;79:2427–2436. doi: 10.1021/ac061598h
  • Nightingale M, Mayer B. Identifying sources and processes controlling the sulphur cycle in the Canyon Creek watershed, Alberta, Canada. Isotopes Environ Health Stud. 2012;48:89–104. doi: 10.1080/10256016.2011.631704
  • Thode HG. Sulphur isotopes in nature and the environment: an overview. In: Krouse HR, Grinenko VA, editors. Stable isotopes: natural and anthropogenic sulfur in the environment. SCOPE 43. Chichester: Wiley; 1991. p. 1–26.
  • Krouse HR, Grinenko VA, editors. Stable isotopes: natural and anthropogenic sulfur in the environment. SCOPE 43. Chichester: Wiley; 1991.
  • Tanz N, Schmidt H-L. δ34S-value measurements in food origin assignments and sulfur isotope fractionations in plants and animals. J Agric Food Chem. 2010;58:3139–3146. doi: 10.1021/jf903251k
  • Tcherkez G, Tea I. 32S/34S isotope fractionation in plant sulphur metabolism. New Phytol. 2013;200:44–53. doi: 10.1111/nph.12314
  • Halmann M, Schmidt H-L. Cyanogen-induced synthesis of 18O-labelled β-ribofuranose 1-phosphate and its acid-catalysed hydrolysis. J Chem Soc. C. 1970;1970:1191–1193. doi: 10.1039/j39700001191
  • Longinelli A, Selmo E. δ18O values of Sus scrofa blood water and bone phosphate; a marked discrepancy between domestic and wild specimens. Rapid Commun Mass Spectrom. 2011;25:3732–3734. doi: 10.1002/rcm.5256
  • Pfahler V, Dürr-Auster T, Tamburini F, Bernasconi SM, Frossard E. 18O Enrichment in phosphorus pools extracted from soybean leaves. New Phytol. 2013;197:186–193. doi: 10.1111/j.1469-8137.2012.04379.x
  • Grimes V, Pellegrini M. A comparison of pretreatment methods for the analysis of phosphate oxygen isotope ratios in bioapatite. Rapid Commun Mass Spectrom. 2013;27:375–390. doi: 10.1002/rcm.6463
  • Van Hook WA. Kinetic isotope effects: introduction and discussion of the theory. In: Collins CJ, Bowman NS, editors. Isotope effects in chemical reactions. New York: Van Nostrand Reinhold Company; 1970. p. 1–89.
  • Wolfsberg M, Van Hook WA, Paneth P, Rebelo LPN. Isotope effects in the chemical, geological and biosciences. Dordrecht: Springer Science + Business Media; 2010.
  • Huskey WP. Origins and interpretations of heavy-atom isotope effects. In: Cook PF, editor. Enzyme mechanisms from isotope effects. Boca Raton (FL): CRC Press; 1991. p. 37–72.
  • Northrop DB. Intrinsic isotope effects in enzyme-catalyzed reactions. In: Cook PF, editor. Enzyme mechanisms from isotope effects. Boca Raton (FL): CRC Press; 1991. p. 181–202.
  • O'Leary MH. Studies of enzyme reaction mechanisms by means of heavy-atom isotope effects. In: Cleland WW, O'Leary MH, Northrop DB, editors. Isotope effects on enzyme-catalyzed reactions. Baltimore: University Park Press; 1977. p. 233–251.
  • Cleland WW, O'Leary MH, Northrop DB, editors. Isotope effects on enzyme-catalyzed reactions. Baltimore: University Park Press; 1977.
  • Estep MF, Tabita FR, Parker PL, Van Baalen C. Carbon isotope fractionation by ribulose-1,5-bisphosphate carboxylase from various organisms. Plant Physiol. 1978;61:680–687. doi: 10.1104/pp.61.4.680
  • Winkler FJ, Kexel H, Kranz C, Schmidt H-L. Parameters affecting the 13CO2/12CO2 isotope discrimination of the ribulose-1,5-bisphosphate carboxylase reaction. In: Schmidt H-L, Förstel H, Heinzinger K, editors. Stable isotopes, Proceedings of the 4th International Conference, Jülich 1981. Amsterdam: Elsevier Scientific Publishing Company; 1982. p. 83–89.
  • McNevin DB, Badger MR, Whitney SM, von Caemmerer S, Tcherkez GGB, Farquhar GD. Differences in carbon isotope discrimination of three variants of D-ribulose-1,5-bisphosphate carboxylase/oxygenase reflect differences in their catalytic mechanisms. J Biol Chem. 2007;282:36068–36076. doi: 10.1074/jbc.M706274200
  • Roeske CA, O'Leary MH. Carbon isotope effects on the enzyme-catalyzed carboxylation of ribulose bisphosphate. Biochem. 1984;23:6275–6284. doi: 10.1021/bi00320a058
  • Hayes JM. Fractionation of carbon and hydrogen isotopes in biosynthetic processes. In: Valley JW, Cole DR, editors. Stable isotope geochemistry, Vol. 43 (Reviews in mineralogy and geochemistry). Washington: Mineralogical Society of America; 2001. p. 225–278.
  • Schmidt H-L, Kexel H. Metabolite pools and metabolic branching as factors of in vivo isotope discriminations by kinetic isotope effects. Isotopes Environ Health Stud. 1998;34:19–30. doi: 10.1080/10256019708036328
  • Williams TCR, Sweetlove LJ, Ratcliffe RG. Capturing metabolite channeling in metabolic flux phenotypes. Plant Physiol. 2011;157:981–984. doi: 10.1104/pp.111.184887
  • Tcherkez G, Mahé A, Hodges M. 12C/13C Fractionations in plant primary metabolism. Trends Plant Sci. 2011;16:499–506.
  • Schlegel HG. Allgemeine Mikrobiologie, 3. Auflage. Stuttgart: Georg Thieme; 1974. p. 252–254 and 325–327.
  • Metges C, Kempe K, Schmidt H-L. Dependence of the carbon-isotope contents of breath carbon dioxide, milk, serum and rumen fermentation products on the δ13C value of food in dairy cows. Brit J Nutr. 1990;63:187–196. doi: 10.1079/BJN19900106
  • Buckel W, Thauer RK. Energy conservation via electron bifurcating ferredoxin reduction and proton/Na+ translocating ferredoxin oxidation. Biochim Biophys Acta. 2013;1827:94–113. doi: 10.1016/j.bbabio.2012.07.002
  • Wortmann UG, Bernasconi SM, Böttcher ME. Hypersulfidic deep biosphere indicates extreme sulfur isotope fractionation during single-step microbial sulfate reduction. Geology. 2001;29:647–650. doi: 10.1130/0091-7613(2001)029<0647:HDBIES>2.0.CO;2
  • Rudnicki MD, Elderfield H, Spiro B. Fractionation of sulfur isotopes during bacterial sulfate reduction in deep ocean sediments at elevated temperatures. Geochim Cosmochim Acta. 2001;65:777–789. doi: 10.1016/S0016-7037(00)00579-2
  • Tudge AP, Thode HG. Thermodynamic properties of isotopic compounds of sulphur. Can J Res. 1950;28b:567–578. doi: 10.1139/cjr50b-069
  • Harrison AG, Thode HG. The kinetic isotope effect in the chemical reduction of sulphate. Trans Farad Soc. 1957;53:1648–1651. doi: 10.1039/tf9575301648
  • Canfield DE. Isotope fractionation by natural populations of sulfate-reducing bacteria. Geochim Cosmochim Acta. 2001;65:1117–1124. doi: 10.1016/S0016-7037(00)00584-6
  • Melzer E, O'Leary MH. Aspartic-acid synthesis in C3 plants. Planta. 1991;185:368–371. doi: 10.1007/BF00201058
  • Cantón FR, Suárez MF, Cánovas FM. Molecular aspects of nitrogen mobilization and recycling in trees. Photosynth Res. 2005;83:265–278. doi: 10.1007/s11120-004-9366-9
  • Richardson DJ, Watmough NJ. Inorganic nitrogen metabolism in bacteria. Current Opin Chem Biol. 1999;3:207–219. doi: 10.1016/S1367-5931(99)80034-9
  • Heldt HW, Piechulla B. Pflanzenbiochemie, 4. Auflage. Heidelberg: Spektrum Akademischer; 2008. p. 263–275.
  • Deleens E, Treichel I, O'Leary MH. Temperature dependence of carbon isotope fractionation in CAM plants. Plant Physiol. 1985;79:202–206. doi: 10.1104/pp.79.1.202
  • Northrop DB. Determining the absolute magnitude of hydrogen isotope effects. In: Cleland WW, O'Leary MH, Northrop DB, editors. Isotope effects on enzyme-catalyzed reactions. Baltimore: University Park Press; 1977, p. 122–152.
  • Koch HF, Koch AS. Proton-transfer-reactions. 5. An observed primary kinetic isotope effect that increases with increasing temperature. J Am Chem Soc. 1984;106:4536–4539. doi: 10.1021/ja00328a039
  • Sühnel J and Schowen RL. Theoretical basis for primary and secondary hydrogen isotope effects. In: Cook PF, editor. Enzyme mechanisms from isotope effects. Boca Raton (FL): CRC Press; 1991, p. 3–35.
  • Klinman J. Hydrogen tunneling and coupled motion in enzyme reactions. In: Cook PF, editor. Enzyme mechanisms from isotope effects. Boca Raton (FL): CRC Press; 1991, p. 127–148.
  • O'Leary MH. Environmental effects on carbon isotope fractionations in terrestrial plants. In: Wada E, Yoneyama T, Minagawa M, Ando T, Fry BD, editors. Stable isotopes in the biosphere. Kyoto: Kyoto University Press; 1995. p. 78–91.
  • Northrop DB. Uses of isotope effects in the study of enzymes. Methods. 2001;24:117–124. doi: 10.1006/meth.2001.1173
  • Northrop DB. Effects of high pressure on enzymatic activity. Biochim Biophys Acta. 2002;1595:71–79. doi: 10.1016/S0167-4838(01)00335-1
  • Northrop DB. Unusual origins of isotope effects in enzyme-catalysed reactions. Phil Trans R Soc B. 2006;361:1341–1349. doi: 10.1098/rstb.2006.1875
  • Korakli M, Gänzle MG, Knorr R, Frank M, Rossmann A and Vogel RF. Metabolism of Lactobacillus sanfranciscensis under high pressure: investigations using stable isotopes. In: Hayashi R, editor. Trends in high pressure bioscience and biotechnology. Amsterdam: Elsevier; 2002. p. 287–294.
  • UNESCO. Background papers and supporting data on the Practical Salinity Scale 1978. UNESCO Technical Papers in Marine Science 37, Unesco/ICES/SCOR/IAPSO Joint Panel on OceanoGraphic Tables and Standards; 1981. p. 7.
  • Guy RD, Reid DM, Krouse HR. Shifts in carbon isotope ratios of two C3 halophytes under natural and artificial conditions. Oecologia. 1980;44:241–247. doi: 10.1007/BF00572686
  • Guy RD, Warne PG, Reid DM. Stable carbon isotope ratio as an index of water-use efficiency in C3 halophytes – possible relationship to strategies for osmotic adjustment. In: Rundel PW, Ehleringer JR, Nagy KA, editors. Stable isotopes in ecological research, Vol. 68. New York: Springer; 1989. p. 55–75.
  • Sachse D, Billault I, Bowen GJ, Chikaraishi Y, Dawson TE, Feakins SJ, Freeman KH, Magill CR, McInerney FA, van der Meer MTJ, Polissar P, Robins RJ, Sachs JP, Schmidt H-L, Sessions AL, White JWC, West JB, Kahmen A. Molecular paleohydrology: interpreting the hydrogen-isotope composition of lipid biomarkers from photosynthesizing organisms. Ann Rev Earth Planet Sci. 2012;40:221–249. doi: 10.1146/annurev-earth-042711-105535
  • Ladd SN, Sachs JP. Inverse relationship between salinity and n-alkane δD values in the mangrove Avicennia marina. Org Geochem. 2012;48:25–36. doi: 10.1016/j.orggeochem.2012.04.009
  • Helle G, Schleser GH. Beyond CO2-fixation by Rubisco – an interpretation of 13C/12C variations in tree rings from novel intra-seasonal studies on broad-leaf trees. Plant Cell Environ. 2004;27:367–380. doi: 10.1111/j.0016-8025.2003.01159.x
  • Loader NJ, Robertson I, McCarroll D. Comparison of stable isotope ratios in the whole wood, cellulose and lignin of oak tree-rings. Palaeogeogr Palaeoclimatol Palaeoecol. 2003;196:395–407. doi: 10.1016/S0031-0182(03)00466-8
  • Gleixner G, Danier H-J, Werner RA, Schmidt H-L. Correlations between the 13C content of primary and secondary plant products in different cell compartments and that in decomposing basidiomycetes. Plant Physiol. 1993;102:1287–1290.
  • Richards MP, Fuller BT, Sponheimer M, Robinson T, Ayliffe L. Sulphur isotopes in palaeodietary studies: a review and results from a controlled feeding experiment. Int J Osteoarchaeol. 2003;13:37–45. doi: 10.1002/oa.654
  • Starck JM, Moser P, Werner RA, Linke P. Pythons metabolize prey to fuel the response to feeding. Proc R Soc Lond B. 2004;271:903–908. doi: 10.1098/rspb.2004.2681
  • Waas S, Werner RA, Starck JM. Fuel switching and energy partitioning during the post-prandial metabolic response in the ball python (Python regius). J Exp Biol. 2010;213:1266–1271. doi: 10.1242/jeb.033662
  • Abelson PH, Hoering TC. Carbon isotope fractionation in formation of amino acids by photosynthetic organisms. Proc Natl Acad Sci USA. 1961;47:623–632. doi: 10.1073/pnas.47.5.623
  • Galimov EM. Isotope organic geochemistry. Org Geochem. 2006;37:1200–1262. doi: 10.1016/j.orggeochem.2006.04.009
  • Macko SA, Fogel (Estep) ML, Hare PE, Hoering TC. Isotopic fractionation of nitrogen and carbon in the synthesis of amino acids by microorganisms. Chem Geol Isotopes Geosci Sect. 1987;65:79–92. doi: 10.1016/0168-9622(87)90064-9
  • Savidge WB, Blair NE. Patterns of intramolecular carbon isotopic heterogeneity within amino acids from autotrophs and heterotrophs. Oecologia. 2004;139:178–189. doi: 10.1007/s00442-004-1500-z
  • Savidge WB, Blair NE. Intramolecular carbon isotopic composition of monosodium glutamate: biochemical pathways and product source identification. J Agric Food Chem. 2005;53:197–201. doi: 10.1021/jf040200k
  • Rustad JR. Ab initio calculation of the carbon signatures of amino acids. Org Geochem. 2009;40:720–723. doi: 10.1016/j.orggeochem.2009.03.003
  • Gleixner G, Scrimgeour C, Schmidt H-L, Viola R. Stable isotope distribution in the major metabolites of source and sink organs of Solanum tuberosum L.: a powerful tool in the study of metabolic partitioning in intact plants. Planta. 1998;207:241–245. doi: 10.1007/s004250050479
  • Schmidt H-L, Gensler M, Weber D. Nachweis eines unerlaubten Zusatzes von naturidentischen Säuren zu Obstsäften mit Hilfe von Isotopenverhältnismessungen. Flüss Obst. 2000;67:131–136.
  • Gilbert A, Robins RJ, Remaud GS, Tcherkez GGB. Intramolecular 13C pattern in hexoses from autotrophic and heterotrophic C3 plant tissues. Proc Natl Acad Sci USA. 2012;109:18204–18209. doi: 10.1073/pnas.1211149109
  • Ivlev AA, Dubinsky AYu, Igamberdiev AU. Oscillatory pattern of photosynthetic CO2 assimilation affects 13C distribution in carbohydrates. Izvestiya TAA 2010;7:1–23 [English translation journal].
  • Gilbert A, Silvestre V, Robins RJ, Remaud GS, Tcherkez G. Biochemical and physiological determinants of intramolecular isotope patterns in sucrose from C3, C4 and CAM plants accessed by isotopic 13C NMR spectrometry: a viewpoint. Nat Prod Rep. 2012;29:476–486. doi: 10.1039/c2np00089j
  • Galimov EM. Phenomenon of life: between equilibrium and non-linearity. Orig Life Evol Biosph. 2004;34:599–613. doi: 10.1023/B:ORIG.0000043131.86328.9d
  • Ivlev AA. Oscillatory nature of metabolism and carbon isotope distribution in photo-synthesizing cells. In: Najafpour MM, editor. Advances in photosynthesis – Fundamental aspects. Rijeka: In Tech; 2012. p. 341–366.
  • O'Leary MH, Yapp CJ. Equilibrium carbon isotope effect on a decarboxylation reaction. Biochem Biophys Res Commun. 1978;80:155–160. doi: 10.1016/0006-291X(78)91117-8
  • Varshavskii YaM. [Distribution of the heavy carbon isotope (13C) in biological systems]. Biofizika. 1988;33:377–382 [ Russian].
  • Buchachenko AL. Are chemical transformations in an enzyme–substrate complex reversible? The experience of the fractionation of isotopes in enzymatic reactions. Russ J Phys Chem. 2003;77:1298–1302.
  • Buchachenko AL. On isotope fractionation in enzymatic reaction. Russ J Phys Chem. 2007;81:836. doi: 10.1134/S0036024407050330
  • Galimov EM. On an erroneous “experience” of isotope fractionation in enzymatic reaction. Russ J Phys Chem. 2007;81:831–835. doi: 10.1134/S0036024407050329
  • Brooks SPJ. Equilibrium enzymes in metabolic pathways. Biochem Cell Biol. 1996;74:411–416. doi: 10.1139/o96-044
  • Alberty RA. Thermodynamics of systems of biological reactions. J Theor Biol. 2002;215:491–501. doi: 10.1006/jtbi.2001.2516
  • Braun A, Vikari A, Windisch W, Auerswald K. Transamination governs nitrogen isotope heterogeneity of amino acids in rats. J Agric Food Chem. 2014;62:8008–8013. doi: 10.1021/jf502295f
  • O'Leary MH. Carbon isotope fractionation in plants. Phytochemistry. 1981;20:553–567. doi: 10.1016/0031-9422(81)85134-5
  • Suess HE. Radiocarbon concentration in modern wood. Science. 1955;122:415–417. doi: 10.1126/science.122.3166.415-a
  • Lajtha K, Marshall JD. Sources of variation in the stable isotope composition of plants. In: Lajhta K, Michener RH, editors. Stable isotopes in ecology and environmental science. Oxford: Blackwell Scientific Publications; 1994. p. 1–21.
  • Pataki DE, Ehleringer JR, Flanagan LB, Yakir D, Bowling DR, Still CJ, Buchmann N, Kaplan JO, Berry JA. The application and interpretation of Keeling plots in terrestrial carbon cycle research. Glob Biogeochem Cyc. 2003;17:1022. doi:10.1029/2001GB001850
  • Rossmann A, Butzenlechner M, Schmidt H-L. Evidence for a nonstatistical carbon isotope distribution in natural glucose. Plant Physiol. 1991;96:609–614. doi: 10.1104/pp.96.2.609
  • Gleixner G, Schmidt H-L. Carbon isotope effects on the fructose-1,6-bisphosphate aldolase reaction, origin for non-statistical 13C distribution in carbohydrates. J Biol Chem. 1997;272:5382–5387. doi: 10.1074/jbc.272.9.5382
  • Ivlev AA. An isotopic effect in the glycine dehydrogenase reaction underlies the intra-molecular isotope heterogeneity of glucose carbon in starch synthesized during photorespiration. Biophysics. 2005;50:931–938.
  • Ivlev AA, Dubinsky AYu. On the nature of the light-induced component of dark respiration of plants. Biophysics. 2011;56:679–686. doi: 10.1134/S0006350911040099
  • Volk RJ, Jackson WA. Photorespiratory phenomena in maize. Oxygen uptake, isotope discrimination, and carbon dioxide efflux. Plant Physiol. 1972;49:218–223. doi: 10.1104/pp.49.2.218
  • Gilbert A, Silvestre V, Segebarth N, Tcherkez G, Guillou C, Robins RJ, Akoka S, Remaud GS. The intramolecular 13C-distribution in ethanol reveals the influence of the CO2-fixation pathway and environmental conditions on the site-specific 13C variation in glucose. Plant Cell Environ. 2011;34:1104–1112. doi: 10.1111/j.1365-3040.2011.02308.x
  • Schmidt H-L. Isotopic patterns in natural products. Labels without labelling. In Allen J, Voges R, editors. Synthesis and applications of isotopically labelled compounds 1994. Proceedings of the 5th international symposium. Chichester: Wiley; 1995. p. 869–874.
  • Ivlev AA. Intramolecular isotopic distributions in metabolites of the glycolytic chain. Biophysics. 2004;49:414–429.
  • Schmidt H-L, Gleixner G. Carbon isotope effects on key reactions in plant metabolism and 13C-patterns in natural compounds. In Griffiths H, editor. Stable isotopes, integration of biological, ecological and geochemical processes. Oxford: BIOS Scientific Publishers; 1998. p. 13–25.
  • Melzer E, Schmidt H-L. Carbon isotope effects on the pyruvate-dehydrogenase reaction and their importance for relative carbon-13 depletion in lipids. J Biol Chem. 1987;262:8159–8164.
  • Tovar-Méndez A, Miernyk JA, Randall DD. Regulation of pyruvate dehydrogenase complex activity in plant cells. Eur J Biochem. 2003;270:1043–1049. doi: 10.1046/j.1432-1033.2003.03469.x
  • Werner RA, Buchmann N, Siegwolf RTW, Kornexl BE, Gessler A. Metabolic fluxes, carbon isotope fractionation and respiration – lessons to be learned from plant biochemistry. New Phytol. 2011;191:10–15. doi: 10.1111/j.1469-8137.2011.03741.x
  • Schmidt H-L, Kexel H, Butzenlechner M, Schwarz S, Gleixner G, Thimet S, Werner RA, Gensler M. Non-statistical isotope distribution in natural compounds: mirror of their biosynthesis and key for their origin assignment. In: Wada E, Yoneyama T, Minagawa M, Ando T, Fry BD, editors. Stable isotopes in the biosphere. Kyoto: Kyoto University Press; 1995. p. 17–35.
  • Greule M, Keppler F. Stable isotope determination of ester and ether methyl moieties in plant methoxyl groups. Isotopes Environ Health Stud. 2011;47:470–482. doi: 10.1080/10256016.2011.616270
  • Tcherkez G, Farquhar GD. Carbon isotope effect predictions for enzymes involved in the primary carbon metabolism of plant leaves. Funct Plant Biol. 2005;32:277–291. doi: 10.1071/FP04211
  • Voronin V, Ivlev AA, Oskolkov V, Boettger T. Intra-seasonal dynamics in metabolic processes of 13C/12C and 18O/16O in components of Scots pine twigs from southern Siberia interpreted with a conceptual framework based on the Carbon Metabolism Oscillatory Model. BMC Plant Biol. 2012;12:76–87. doi: 10.1186/1471-2229-12-76
  • Priault P, Wegener F, Werner C. Pronounced differences in diurnal variation of carbon isotope composition of leaf respired CO2 among functional groups. New Phytol. 2009;181:400–412. doi: 10.1111/j.1469-8137.2008.02665.x
  • Werner C, Wegener F, Unger S, Nogués S, Priault P. Short-term dynamics of isotopic composition of leaf-respired CO2 upon darkening: measurements and implications. Rapid Commun Mass Spectrom. 2009;23:2428–2438. doi: 10.1002/rcm.4036
  • Lehmann MM, Wegener F, Barthel M, Werner C, Buchmann N, Siegwolf RTW, Werner RA. Disentangling biochemical processes determining δ13C of leaf-respired CO2 during light–dark transitions. Plant Cell Environ. Forthcoming.
  • Ziegler H, Osmond CB, Stichler W, Trimborn P. Hydrogen isotope discrimination in higher plants: correlations with photosynthetic pathway and environment. Planta (Berlin). 1976;128:85–92. doi: 10.1007/BF00397183
  • Zhang B-L, Quemerais B, Martin ML, Martin GJ, Williams JM. Determination of the natural deuterium distribution in glucose from plants having different photosynthetic pathways. Phytochem Anal. 1994;5:105–110. doi: 10.1002/pca.2800050304
  • Schleucher J, Vanderveer P, Markley JL, Sharkey TD. Intramolecular deuterium distributions reveal disequilibrium of chloroplast phosphoglucose isomerase. Plant Cell Environ. 1999;22:525–533. doi: 10.1046/j.1365-3040.1999.00440.x
  • Robins RJ, Billault I, Duan J-R, Guiet S, Pionnier S, Zhang B-L. Measurement of 2H distribution in natural products by quantitative 2H NMR: an approach to understanding metabolism and enzyme mechanism? Phytochem Rev. 2003;2:87–102. doi: 10.1023/B:PHYT.0000004301.52646.a8
  • Wong WW, Benedict CR, Kohel RJ. Enzymic fractionation of the stable carbon isotopes of carbon dioxide by ribulose-1,5-bisphosphate carboxylase. Plant Physiol. 1979;63:852–856. doi: 10.1104/pp.63.5.852
  • Schmidt H-L, Winkler FJ, Latzko E, Wirth E. 13C-Kinetic isotope effects in photosynthetic carboxylation reactions and δ13C-values of plant material. Israel J Chem. 1978;17:223–224. doi: 10.1002/ijch.197800038
  • O'Leary MH. Heavy-atom isotope effects on enzyme-catalyzed reactions. In: Schmidt H-L, Förstel H, Heinzinger K, editors. Stable isotopes: proceedings of the 4th international conference, Jülich 1981. Amsterdam: Elsevier; 1982. p. 67–75.
  • Yang H, Gandhi H, Shi L, Kreuzer HW, Ostrom NE, Hegg EL. Using gas chromatography/isotope ratio mass spectrometry to determine the fractionation factor for H2 production by hydrogenases. Rapid Commun Mass Spectrom. 2012;26:61–68. doi: 10.1002/rcm.5298
  • Peregrina JR, Sánchez-Azqueta A, Herguedas B, Martínez-Júlvez M, Medina M. Role of specific residues in coenzyme binding, charge-transfer complex formation, and catalysis in Anabaena ferredoxin NADP+-reductase. Biochim Biophys Acta. 2010;1797:1638–1646. doi: 10.1016/j.bbabio.2010.05.006
  • Klinman JP. Hydrogen tunneling and coupled motion in enzyme reactions. In: Cook PF, editor. Enzyme mechanism from isotope effects. Boca Raton (FL): CRC Press; 1991. p. 127–148.
  • Blanchard JS, Wong KK. Isotope effects on enzyme-catalyzed redox reactions. In: Cook PF, editor. Enzyme mechanism from isotope effects. Boca Raton (FL): CRC Press; 1991. p. 341–366.
  • Anderson VE. Isotope effects on enzyme-catalyzed β-eliminations. In: Cook PF, editor. Enzyme mechanism from isotope effects. Boca Raton (FL): CRC Press; 1991. p. 389–417.
  • Behrouzian B, Fauconnot L, Daligault F, Nugier-Chauvin C, Patin H, Buist PH. Mechanism of fatty acid desaturation in the green alga Chlorella vulgaris. Eur J Biochem. 2001;268:3545–3549. doi: 10.1046/j.1432-1327.2001.02258.x
  • Tcherkez G. Natural 15N/14N isotope composition in C3 leaves: are enzymatic isotope effects informative for predicting the 15N-abundance in key metabolites? Funct Plant Biol. 2011;38:1–12. doi: 10.1071/FP10091
  • Weiss PM. Heavy-atom isotope effects using the isotope ratio mass spectrometer. In: Cook PF, editor. Enzyme mechanism from isotope effects. Boca Raton (FL): CRC Press; 1991. p. 291–311.
  • Billault I, Guiet S, Mabon F, Robins RJ. Natural deuterium distribution in long-chain fatty acids is nonstatistical: a site-specific study by quantitative 2H NMR spectroscopy. Chem Bio Chem. 2001;2:425–431. doi: 10.1002/1439-7633(20010601)2:6<425::AID-CBIC425>3.0.CO;2-Z
  • Schmidt H-L, Werner RA, Eisenreich W, Fuganti C, Fronza G, Remaud G, Robins RJ. The prediction of isotopic patterns in phenylpropanoids from their precursors and the mechanism of the NIH-shift: basis of the isotopic characteristics of natural aromatic compounds. Phytochemistry. 2006;67:1094–1103. doi: 10.1016/j.phytochem.2006.03.014
  • Kroopnick P, Craig H. Atmospheric oxygen: isotopic composition and solubility fractionation. Science. 1972;175:54–55. doi: 10.1126/science.175.4017.54
  • Tuross N, Warinner C, Kirsanow K, Kester C. Organic oxygen and hydrogen isotopes in a porcine controlled dietary study. Rapid Commun Mass Spectrom. 2008;22:1741–1745. doi: 10.1002/rcm.3556
  • Schmidt H-L, Weber D, Rossmann A, Werner RA. The potential of intermolecular and intramolecular isotopic correlations for authenticity control. In: Teranishi R, Wick EL, Hornstein I, editors. Flavor chemistry: thirty years of progress. New York: Kluwer Academic Plenum Publishers; 1999. p. 55–61.
  • Sra AK, Hu Y, Martin GE, Snow DD, Ribbe MW, Kohen A. Competitive 15N kinetic isotope effects of nitrogenase-catalyzed dinitrogen reduction. J Am Chem Soc. 2004;126:12768–12769. doi: 10.1021/ja0458470
  • Hoering TC, Ford HT. The isotope effect in the fixation of nitrogen by Azotobacter. J Am Chem Soc. 1960;82:376–378. doi: 10.1021/ja01487a031
  • Unkovich M. Isotope discrimination provides new insight into biological nitrogen fixation. New Phytol. 2013;198:643–646. doi: 10.1111/nph.12227
  • Yoneyama T. Nitrogen metabolism and fractionation of nitrogen isotopes in plants. In: Wada E, Yoneyama T, Minagawa M, Ando T, Fry BD, editors. Stable isotopes in the biosphere. Kyoto: Kyoto University Press; 1995. p. 92–102.
  • Morgan MA, Volk RJ, Jackson WA. Simultaneous influx and efflux of nitrate during uptake by perennial ryegrass. Plant Physiol. 1973;51:267–272. doi: 10.1104/pp.51.2.267
  • Mariotti A, Germon JC, Hubert P, Kaiser P, Letolle R, Tardieux A, Tardieux P. Experimental determination of nitrogen kinetic isotope fractionation: some principles; illustration for the denitrification and nitrification processes. Plant Soil. 1981;62:413–430. doi: 10.1007/BF02374138
  • Averill BA, Tiedje JM. The chemical mechanism of microbial denitrification. FEBS Lett. 1982;138:8–12. doi: 10.1016/0014-5793(82)80383-9
  • Yoneyama T, Kamachi K, Yamaya T, Mae T. Fractionation of nitrogen isotopes by glutamine synthetase isolated from spinach leaves. Plant Cell Physiol. 1993;34:489–491.
  • Macko SA, Fogel Estep ML, Engel MH, Hare PE. Kinetic fractionation of stable nitrogen isotopes during amino acid transamination. Geochim Cosmochim Acta. 1986;50:2143–2146. doi: 10.1016/0016-7037(86)90068-2
  • Singh S, Lewis NG, Towers GHN. Nitrogen recycling during phenylpropanoid metabolism in sweet potato tubers. J Plant Physiol. 1998;153:316–323. doi: 10.1016/S0176-1617(98)80157-0
  • Vo J, Inwood W, Hayes JM, Kustu S. Mechanism for nitrogen isotope fractionation during ammonium assimilation by Escherichia coli K12. Proc Natl Acad Sci USA. 2013;110:8696–8701. doi: 10.1073/pnas.1216683110
  • Monson KD, Hayes JM. Biosynthetic control of the natural abundance of carbon 13 at specific positions within fatty acids in Saccharomyces cerevisiae. Isotopic fractionations in lipid synthesis as evidence for peroxisomal regulation. J Biol Chem. 1982;257:5568–5575.
  • Monson KD, Hayes JM. Carbon isotopic fractionation in the biosynthesis of bacterial fatty acids. Ozonolysis of unsaturated fatty acids as a means of determining the intramolecular distribution of carbon isotopes. Geochim Cosmochim Acta. 1982;46:139–149. doi: 10.1016/0016-7037(82)90241-1
  • Schmidt H-L, Eisenreich W. Systematic and regularities in the origin of 2H patterns in natural compounds. Isotopes Environ Health Stud. 2001;37:253–254. doi: 10.1080/10256010108033300
  • Martin GJ, Lavoine-Hanneguelle S, Mabon F, Martin ML. The fellowship of natural abundance 2H-isotopomers of monoterpenes. Phytochemisty. 2004;65:2815–2831. doi: 10.1016/j.phytochem.2004.07.015
  • Gerdov SM, Grishin YuK, Roznyatovsky VA, Ustynyuk YuA, Kuchin AV, Alekseev IN, Frolova LL. Quantitative 2H NMR spectroscopy. 2. “H/D-Isotope portraits” of cyclic mono-terpenes and discrimination of their biosynthetic pathways. Russ Chem Bull Int Ed. 2005;54:1258–1265. doi: 10.1007/s11172-005-0391-4
  • Martin GJ, Heck G, Djamaris-Zainal R, Martin ML. Isotopic criteria in the characterization of aromatic molecules. 1. Hydrogen affiliation in natural benzenoid/phenylpropanoid molecules. J Agric Food Chem. 2006;54:10112–10119. doi: 10.1021/jf061979w
  • Marshall JD, Brooks JR, Lajtha K. Sources of variation in the stable isotope composition of plants. In: Michener R, Lajtha K, editors. Stable isotopes in ecology and environmental science. 2nd ed. Malden: Blackwell Publishing Ltd; 2008. p. 22–60.
  • Farquhar GD, Ehleringer JR, Hubick KT. Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol. 1989;40:503–537. doi: 10.1146/annurev.pp.40.060189.002443
  • Farquhar GD, Lloyd J. Carbon and oxygen isotope effects in the exchange of carbon dioxide between terrestrial plants and the atmosphere. In: Ehleringer JR, Hall AE, Farquhar GD, editors. Stable isotopes and plant carbon–water relations. San Diego: Academic Press; 1993. p. 47–70.
  • Berry JA. Studies of mechanisms affecting the fractionation of carbon isotopes in photosynthesis. In: Rundel PW, Ehleringer JR, Nagy KA, editors. Stable isotopes in ecological research, Vol. 68. New York: Springer; 1989. p. 82–94.
  • Brugnoli E, Scartazza A, Lauteri M, Monteverdi MC, Máguas C. Carbon isotope discrimination in structural and non-structural carbohydrates in relation to productivity and adaptation to unfavourable conditions. In: Griffiths H, editor. Stable isotopes. Integration of biological, ecological and geochemical processes. Oxford: BIOS Scientific Publishers; 1998. p. 133–146.
  • Gillon JS, Borland AM, Harwood KG, Roberts A, Broadmeadow MSJ, Griffiths H. Carbon isotope discrimination in terrestrial plants: carboxylations and decarboxylations. In: Griffiths H, editor. Stable isotopes. Integration of biological, ecological and geochemical processes. Oxford: BIOS Scientific Publishers; 1998. p. 111–131.
  • Marino BD, McElroy MB. Isotopic composition of atmospheric CO2 inferred from carbon in C4 plant cellulose. Nature. 1991;349:127–131. doi: 10.1038/349127a0
  • Wittmer MHOM, Auerswald K, Bai Y, Schäufele R, Schnyder H. Changes in the abundance of C3/C4 species of Inner Mongolia grassland: evidence from isotopic composition of soil and vegetation. Glob Change Biol. 2010;16:605–616. doi: 10.1111/j.1365-2486.2009.02033.x
  • Yakir D. Oxygen-18 of leaf water: a crossroad for plant-associated isotopic signals. In: Griffiths H, editor. Stable isotopes, integration of biological, ecological and geochemical processes. Oxford: BIOS Scientific Publishers; 1998. p. 147–168.
  • Saurer M, Aellen K, Siegwolf R. Correlating δ13C and δ18O in cellulose of trees. Plant Cell Environ. 1997;20:1543–1550. doi: 10.1046/j.1365-3040.1997.d01-53.x
  • Farquhar GD, Hubick KT, Condon AG, Richards RA. Carbon isotope fractionation and plant water-use efficiency. In: Rundel PW, Ehleringer JR, Nagy KA, editors. Stable isotopes in ecological research, Vol. 68. New York: Springer; 1989. p. 21–40.
  • Auerswald K, Landinger C, Wittmer M, Schnyder H. 13Carbon allocated to the leaf growth zone of Poa pratensis reflects soil water and vapor pressure deficit. Grass Sci Eur. 2010;15:857–859.
  • Franks PJ, Adams MA, Amthor JS, Barbour MM, Berry JA, Ellsworth DS, Farquhar GD, Ghannoum O, Lloyd J, McDowell N, Norby RJ, Tissue DT, von Caemmerer S. Sensitivity of plants to changing atmospheric CO2 concentration: from the geological past to the next century. New Phytol. 2013;197:1077–1094. doi: 10.1111/nph.12104
  • Ainsworth EA, Rogers A. The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ. 2007;30:258–270. doi: 10.1111/j.1365-3040.2007.01641.x
  • Thomas RB, Spal SE, Smith KR, Nippert JB. Evidence of recovery of Juniperus virginiana trees from sulfur pollution after the Clean Air Act. Proc Natl Acad Sci USA. 2013;110:15319–15324. doi: 10.1073/pnas.1308115110
  • Blum A. Drought resistance, water-use efficiency, and yield potential – are they compatible, dissonant, or mutually exclusive? Austr J Agric Res. 2005;56:1159–1168. doi: 10.1071/AR05069
  • Seibt U, Rajabi A, Griffiths H, Berry JA. Carbon isotopes and water use efficiency: sense and sensitivity. Oecologia. 2008;155:441–454. doi: 10.1007/s00442-007-0932-7
  • Ferrio JP, Pou A, Florez-Sarasa I, Gessler A, Kodama N, Flexas J, Ribas-Carbó M. The Péclet effect on leaf water enrichment correlates with leaf hydraulic conductance and mesophyll conductance for CO2. Plant Cell Environ. 2012;35:611–625. doi: 10.1111/j.1365-3040.2011.02440.x
  • Gessler A, Peuke AD, Keitel C, Farquhar GD. Oxygen isotope enrichment of organic matter in Ricinus communis during the diel course and as affected by assimilate transport. New Phytol. 2007;174:600–613. doi: 10.1111/j.1469-8137.2007.02007.x
  • Augusti A, Schleucher J. The ins and outs of stable isotopes in plants. New Phytol. 2007;174:473–475. doi: 10.1111/j.1469-8137.2007.02075.x
  • Dongmann G, Nürnberg HW, Förstel H, Wagener K. On the enrichment of H218O in the leaves of transpiring plants. Radiat Environ Biophys. 1974;11:41–52. doi: 10.1007/BF01323099
  • Jäggi M, Saurer M, Fuhrer J, Siegwolf R. Seasonality of δ18O in needles and wood of Picea abies. New Phytol. 2003;158:51–59. doi: 10.1046/j.1469-8137.2003.00711.x
  • Barbour MM, Roden JS, Farquhar GD, Ehleringer JR. Expressing leaf water and cellulose oxygen isotope ratios as enrichment above source water reveals evidence of a Péclet effect. Oecologia. 2004;138:426–435. doi: 10.1007/s00442-003-1449-3
  • Scheidegger Y, Saurer M, Bahn M, Siegwolf R. Linking stable oxygen and carbon isotopes with stomatal conductance and photosynthetic capacity: a conceptual model. Oecologia. 2000;125:350–357. doi: 10.1007/s004420000466
  • Roden JS, Farquhar GD. A controlled test of the dual-isotope approach for the interpretation of stable carbon and oxygen isotope variation in tree rings. Tree Physiol. 2012;32:490–503. doi: 10.1093/treephys/tps019
  • Roden J, Siegwolf R. Is the dual-isotope conceptual model fully operational? Tree Physiol. 2012;32:1179–1182. doi: 10.1093/treephys/tps099
  • Buchmann N, Brooks JR, Flanagan LB, Ehleringer JR. Carbon isotope discrimination of terrestrial ecosystems. In: Griffiths H, editor. Stable isotopes. Integration of biological, ecological and geochemical processes. Oxford: BIOS Scientific Publishers; 1998. p. 203–221.
  • Suits NS, Denning AS, Berry JA, Still CJ, Kaduk J, Miller JB, Baker IT. Simulation of carbon isotope discrimination of the terrestrial biosphere. Global Biogeochem Cyc. 2005;19:GB1017. doi:10.1029/2003GB002141
  • Evershed RP, Bull ID, Corr LT, Crossman ZM, Van Dongen BE, Evans CJ, Jim S, Mottram HR, Mukherjee AJ, Pancost RD. Compound-specific stable isotope analysis in ecology and paleoecology. In: Michener R, Lajtha K, editors. Stable isotopes in ecology and environmental science. 2nd ed. Malden: Blackwell Publishing Ltd.; 2008. p. 480–540.
  • Bowling DR, Pataki DE, Randerson JT. Carbon isotopes in terrestrial ecosystem pools and CO2 fluxes. New Phytol. 2008;178:24–40. doi: 10.1111/j.1469-8137.2007.02342.x
  • Long SP, Farage PK, Garcia RL. Measurement of leaf and canopy photosynthetic CO2 exchange in the field. J Exp Bot. 1996;47:1629–1642. doi: 10.1093/jxb/47.11.1629
  • Saurer M, Siegwolf RTW, Schweingruber FH. Carbon isotope discrimination indicates improving water-use efficiency of trees in northern Eurasia over the last 100 years. Glob Change Biol. 2004;10:2109–2120. doi: 10.1111/j.1365-2486.2004.00869.x
  • Barbosa ICR, Köhler IH, Auerswald K, Lüps P, Schnyder H. Last-century changes of alpine grassland water-use efficiency: a reconstruction through carbon isotope analysis of a time-series of Capra ibex horns. Glob Change Biol. 2010;16:1171–1180. doi: 10.1111/j.1365-2486.2009.02018.x
  • Auerswald K, Wittmer MHOM, Männel TT, Bai YF, Schäufele R, Schnyder H. Large regional-scale variation in C3/C4 distribution pattern of inner Mongolia steppe is revealed by grazer wool carbon isotope composition. Biogeosciences. 2009;6:795–805. doi: 10.5194/bg-6-795-2009
  • Augusti A, Betson TR, Schleucher J. Hydrogen exchange during cellulose synthesis distinguishes climatic and biochemical isotope fractionations in tree rings. New Phytol. 2006;172:490–499. doi: 10.1111/j.1469-8137.2006.01843.x
  • Augusti A, Betson TR, Schleucher J. Deriving correlated climate and physiological signals from deuterium isotopomers in tree rings. Chem Geol. 2008;252:1–8. doi: 10.1016/j.chemgeo.2008.01.011
  • Gori Y, Wehrens R, Greule M, Keppler F, Ziller L, La Porta N, Camin F. Carbon, hydrogen and oxygen stable isotope ratios of whole wood, cellulose and lignin methoxyl groups of Picea abies as climate proxies. Rapid Commun Mass Spectrom. 2013;27:265–275. doi: 10.1002/rcm.6446
  • Kohl DH, Shearer G. Using variation in natural 15N abundance to investigate N cycle processes. In: Wada E, Yoneyana T, Minagawa M, Ando T, Fry BD, editors. Stable isotopes in the biosphere. Kyoto: Kyoto University Press; 1995. p. 103–130.
  • Evans RD. Soil nitrogen isotope composition. In: Michener R, Lajtha K, editors. Stable isotopes in ecology and environmental science. 2nd ed. Malden: Blackwell Publishing Ltd.; 2008. p. 83–98.
  • Michalski G, Savarino J, Böhlke JK, Thiemens M. Determination of the total oxygen isotopic composition of nitrate and the calibration of a Δ17O nitrate reference material. Anal Chem. 2002;74:4989–4993. doi: 10.1021/ac0256282
  • Pérez T, Trumbore SE, Tyler SC, Matson PA, Ortiz-Monasterio I, Rahn T, Griffith DWT. Identifying the agricultural imprint on the global N2O budget using stable isotopes. J Geophys Res. 2001;106:9869–9878. doi: 10.1029/2000JD900809
  • Bol R, Toyoda S, Yamulki S, Hawkins JMB, Cardenas LM, Yoshida N. Dual isotope and isotopomer ratios of N2O emitted from a temperate grassland soil after fertiliser application. Rapid Commun Mass Spectrom. 2003;17:2550–2556. doi: 10.1002/rcm.1223
  • Zhu R, Liu Y, Li X, Sun J, Xu H, Sun L. Stable isotope natural abundance of nitrous oxide emitted from Antartic tundra soils: effect of sea animal excrement depositions. Rapid Commun Mass Spectrom. 2008;22:3570–3578. doi: 10.1002/rcm.3762
  • Stein LY, Yung YL. Production, isotopic composition, and atmospheric fate of biologically produced nitrous oxide. Annu Rev Earth Planet Sci. 2003;31:329–356. doi: 10.1146/annurev.earth.31.110502.080901
  • Sutka RL, Adams GC, Ostrom NE, Ostrom PH. Isotopologue fractionation during N2O production by fungal denitrification. Rapid Commun Mass Spectrom. 2008;22:3989–3996. doi: 10.1002/rcm.3820
  • Lewicka-Szczebak D, Well R, Köster JR, Fuß R, Senbayram M, Dittert K, Flessa M. Experimental determinations of isotope fractionation factors associated with N2O production and reduction during denitrification in soils. Geochim Cosmochim Acta. 2014;134:55–73. doi: 10.1016/j.gca.2014.03.010
  • Evans RD. Physiological mechanisms influencing plant nitrogen isotope composition. Trends Plant Sci. 2001;6:121–126. doi: 10.1016/S1360-1385(01)01889-1
  • Emmerton KS, Callaghan TV, Jones HE, Leake JR, Michelsen A, Read DJ. Assimilation and isotopic fractionation of nitrogen by mycorrhizal fungi. New Phytol. 2001;151:503–511. doi: 10.1046/j.1469-8137.2001.00178.x
  • Schmidt H-L, Rossmann A, Stöckigt D, Christoph N. Stabilisotopenanalytik. Herkunft und Authentizität von Lebensmitteln. Chem unserer Zeit. 2005;39:90–99. doi: 10.1002/ciuz.200400335
  • Padovan GJ, De Jong D, Rodrigues LP, Marchini JS. Detection of adulteration of commercial honey samples by the 13C/12C isotopic ratio. Food Chem. 2003;82:633–636. doi: 10.1016/S0308-8146(02)00504-6
  • Ehleringer JR, Bowen GJ, Chesson LA, West AG, Podlesak DW, Cerling TE. Hydrogen and oxygen isotope ratios in human hair are related to geography. Proc Natl Acad Sci USA. 2008;105:2788–2793. doi: 10.1073/pnas.0712228105
  • Bontempo L, Camin F, Larcher R, Nicolini G, Perini M, Rossmann A. Coast and year effect on H, O, and C stable isotope ratios of Tyrrhenian and Adriatic italian olive oils. Rapid Commun Mass Spectrom. 2009;23:1043–1048. doi: 10.1002/rcm.3968
  • Georgi M, Voerkelius S, Rossmann A, Graßmann J, Schnitzler WH. Multielement isotope ratios of vegetables from integrated and organic production. Plant Soil. 2005;275:93–100. doi: 10.1007/s11104-005-0258-3
  • Camin F, Perini M, Bontempo L, Fabroni S, Faedi W, Magnani S, Baruzzi G, Bonoli M, Tabilio MR, Musmeci S, Rossmann A, Kelly SD, Rapisarda P. Potential isotopic and chemical markers for characterising organic fruits. Food Chem. 2011;125:1072–1082. doi: 10.1016/j.foodchem.2010.09.081
  • Scampicchio M, Mimmo T, Capici C, Huck C, Innocente N, Drusch S, Cesco S. Identification of milk origin and process-induced changes in milk by stable isotope ratio mass spectrometry. J Agric Food Chem. 2012;60:11268–11273. doi: 10.1021/jf302846j
  • Weber PK, Hutcheon ID, McKeegan KD, Ingram BL. Otolith sulfur isotope method to reconstruct salmon (Oncorhynchus tshawytscha) life history. Can J Fish Aquat Sci. 2002;59:587–591. doi: 10.1139/f02-038
  • Trembaczowski A, Niezgoda H. Relationship between isotope composition of sulphur in sulphate dissolved in river water and sulphur extracted from fish scales. Isotopes Environ Health Stud. 2011;47:189–213. doi: 10.1080/10256016.2011.572166
  • Camin F, Bontempo L, Heinrich K, Horacek M, Kelly SD, Schlicht C, Thomas F, Monahan FJ, Hoogewerff J, Rossmann A. Multielement (H, C, N, S) stable isotope characteristics of lamb meat from different European regions. Anal Bioanal Chem. 2007;389:309–320. doi: 10.1007/s00216-007-1302-3
  • Lehn C, Mützel E, Rossmann A. Multi-element stable isotope analysis of H, C, N, and S in hair and nails of contemporary human remains. Int J Legal Med. 2011;125:695–706. doi: 10.1007/s00414-011-0595-0
  • Baroni MV, Podio NS, Badini RG, Inga M, Ostera HA, Cagnoni M, Gallegos M, Gautier E, Peral-García P, Hoogewerff J, Wunderlin DA. How much do soil and water contribute to the composition of meat? A case study: meat from three areas of Argentina. J Agric Food Chem. 2011;59:11117–11128. doi: 10.1021/jf2023929
  • Jamin E, Guérin R, Rétif M, Lees M, Martin GJ. Improved detection of added water in orange juice by simultaneous determination of the oxygen-18/oxygen-16 isotope ratios of water and ethanol derived from sugars. J Agric Food Chem. 2003;51:5202–5206. doi: 10.1021/jf030167m
  • Perini M, Camin F. δ18O of ethanol in wines and spirits for authentication purposes. J Food Sci. 2013;78:C839–C844. doi: 10.1111/1750-3841.12143
  • Topalov K, Schimmelmann A, Polly PD, Sauer PE, Lowry M. Environmental, trophic, and ecological factors influencing bone collagen δ2H. Geochim Cosmochim Acta. 2013;111:88–104. doi: 10.1016/j.gca.2012.11.017
  • Schmidt H-L, Werner RA, Rossmann A, Mosandl A, Schreier P. Stable isotope ratio analysis in quality control of flavourings. In: Ziegler H, editor. Flavourings, production, composition, applications, regulations. 2nd ed. Weinheim: Wiley-VCH; 2007. p. 602–663.
  • DeNiro MJ, Epstein S. You are what you eat (plus a few ‰): the carbon isotope cycle in food chains. Geol Soc Am Abstr Progr. 1976;8:834–835.
  • Kirsanow K, Tuross N. Oxygen and hydrogen isotopes in rodent tissues: impact of diet, water and ontogeny. Palaeogr Palaeoclim Palaeoecol. 2011;310:9–16. doi: 10.1016/j.palaeo.2011.03.022
  • Fry B. Stable isotope ecology. New York: Springer; 2006. p. 120–134.
  • Gannes LZ, Martínez del Rio C, Koch P. Natural abundance variations in stable isotopes and their potential uses in animal physiological ecology. Comp Biochem Physiol. 1998;119A:725–737. doi: 10.1016/S1095-6433(98)01016-2
  • Macko SA, Engel MH, Andrusevich V, Lubec G, O'Connell TC, Hedges REM. Documenting the diet in ancient human populations through stable isotope analysis of hair. Philos Trans Royal Soc London B. 1999;354:65–76. doi: 10.1098/rstb.1999.0360
  • Nardoto GB, Silva S, Kendall C, Ehleringer JR, Chesson LA, Ferraz ESB, Moreira MZ, Ometto JPHB, Martinelli LA. Geographical patterns of human diet derived from stable-isotope analysis of fingernails. Am J Phys Anthropol. 2006;131:137–146. doi: 10.1002/ajpa.20409
  • Valenzuela LO, Chesson LA, O'Grady SP, Cerling TE, Ehleringer JR. Spatial distributions of carbon, nitrogen and sulfur isotope ratios in human hair across the central United States. Rapid Commun Mass Spectrom. 2011;25:861–868. doi: 10.1002/rcm.4934
  • Valenzuela LO, Chesson LA, Bowen GJ, Cerling TE, Ehleringer JR. Dietary heterogeneity among western industrialized countries reflected in the stable isotope ratios of human hair. PloS One. 2012;7:e34234 (8 p).
  • Ben-David M, Flaherty EA. Stable isotopes in mammalian research: a beginner's guide. J Mammal. 2012;93:312–328. doi: 10.1644/11-MAMM-S-166.1
  • Michener RH, Schell DM. Stable isotope ratios as tracers in marine aquatic food webs. In: Lajhta K, Michener RH, editors. Stable isotopes in ecology and environmental science. Oxford: Blackwell Scientific Publications; 1994. p. 138–157.
  • Barnes C, Jennings S. Effect of temperature, ration, body size and age on sulphur isotope fractionation in fish. Rapid Commun Mass Spectrom. 2007;21:1461–1467. doi: 10.1002/rcm.2982
  • Michener R, Lajhta K, editors. Stable isotopes in ecology and enviromental science. 2nd ed. Malden (MA): Blackwell Publishing Ltd.; 2007.
  • Dawson TE, Siegwolf RTW, editors. Stable isotopes as indicators of ecological change. Waltham (MA): Academic Press; 2007.
  • Griffiths H, editor. Stable isotopes. Integration of biological, ecological and geochemical processes. Oxford: BIOS Scientific Publishers Limited; 1998.
  • Hobson KA, Wassenaar LI. Tracking animal migration with stable isotopes. Amsterdam: Academic Press; 2008.
  • Wolf N, Carleton SA, Martinez del Rio C. Ten years of experimental animal isotopic ecology. Funct Ecol. 2009;23:17–26. doi: 10.1111/j.1365-2435.2009.01529.x
  • McMahon KW, Fogel ML, Elsdon TS, Thorrold SR. Carbon isotope fractionation of amino acids in fish muscle reflects biosynthesis and isotopic routing from dietary protein. J Anim Ecol. 2010;79:1132–1141. doi: 10.1111/j.1365-2656.2010.01722.x
  • Romek KM, Julien M, Frasquet-Darrieux M, Tea I, Antheaume I, Hankard R, Robins RJ. Human baby hair amino acid natural 15N-isotope values are not related to the 15N-isotope values of amino acids in mother's breast milk protein. Amino Acids. 2013;45:1365–1372. doi: 10.1007/s00726-013-1597-7
  • Galimov EM. Fractionation of carbon isotopes on the way from living to fossil organic matter. In: Wada E, Yoneyama T, Minagawa M, Ando T, Fry BD, editors. Stable isotopes in the biosphere. Kyoto: Kyoto University Press; 1995. p. 133–170.
  • Koch PL, Fogel ML, Tuross N. Tracing the diets of fossil animals using stable isotopes. In: Lajhta K, Michener RH, editors. Stable isotopes in ecology and environmental science. Oxford: Blackwell Scientific Publications; 1994. p. 63–92.
  • Koch PL. Isotope study of the biology of modern and fossil vertebrates. In: Michener R, Lajtha K, editors. Stable isotopes in ecology and environmental science. 2nd ed. Malden: Blackwell Publishing Ltd; 2008. p. 99–154.
  • Harbeck M, Grupe G. Experimental chemical degradation compared to natural diagenetic alteration of collagen: implications for collagen quality indicators for stable isotope analysis. Archaeol Anthropol Sci. 2009;1:43–57. doi: 10.1007/s12520-009-0004-5
  • Nehlich O, Richards MP. Establishing collagen quality criteria for sulphur isotope analysis of archaeological bone collagen. Archaeol Anthropol Sci. 2009;1:59–75. doi: 10.1007/s12520-009-0003-6
  • Nehlich O, Borić D, Stefanović S, Richards MP. Sulphur isotope evidence for freshwater fish consumption: a case study from the Danube Gorges, SE Europe. J Archaeol Sci. 2010;37:1131–1139. doi: 10.1016/j.jas.2009.12.013
  • Trueman CN, Moore A. Use of the stable isotope composition of fish scales for monitoring aquatic ecosystems. In: Dawson TE, Siegwolf RTW, editors. Stable isotopes as indicators of ecological change. Amsterdam: Elsevier; 2007. p. 145–161.
  • Zazzo A, Lécuyer C, Mariotti A. Experimentally-controlled carbon and oxygen isotope exchange between bioapatites and water under inorganic and microbially-mediated conditions. Geochim Cosmochim Acta. 2004;68:1–12. doi: 10.1016/S0016-7037(03)00278-3
  • Zazzo A, Lécuyer C, Sheppard SMF, Grandjean P, Mariotti A. Diagenesis and the reconstruction of paleoenvironments: a method to restore original δ18O values of carbonate and phosphate from fossil tooth enamel. Geochim Cosmochim Acta. 2004;68:2245–2258. doi: 10.1016/j.gca.2003.11.009
  • Lang ARG, Mason SG. The exchange of oxygen-18 between cellulose, adsorbed water, and water vapor. Can J Chem. 1959;37:1829–1833. doi: 10.1139/v59-268
  • del Mar Caja M, Preston C, Kempf M, Schreier P. Flavor authentication studies of α-ionone, β-ionone, and α-ionol from various sources. J Agric Food Chem. 2007;55:6700–6704. doi: 10.1021/jf070805r
  • Kroll H, Friedrich J, Menzel M, Schreier P. Carbon and hydrogen stable isotope ratios of carotenoids and β-carotene-based dietary supplements. J Agric Food Chem. 2008;56:4198–4204. doi: 10.1021/jf8002575
  • Coplen TB. Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun Mass Spectrom. 2011;25:2538–2560.
  • Brand WA, Coplen TB. Stable isotope deltas: tiny, yet robust signatures in nature. Isotopes Environ Health Stud. 2012;48:393–409. doi: 10.1080/10256016.2012.666977
  • Sieper H-P, Kupka H-J, Williams T, Rossmann A, Rummel S, Tanz N, Schmidt H-L. A measuring system for the fast simultaneous isotope ratio and elemental analysis of carbon, hydrogen, nitrogen and sulfur in food commodities and other biological material. Rapid Commun Mass Spectrom. 2006;20:2521–2527. doi: 10.1002/rcm.2619
  • Sieper H-P, Kupka H-J, Lange L, Roßmann A, Tanz N, Schmidt H-L. Essential methodological improvements in the oxygen isotope ratio analysis of N-containing organic compounds. Rapid Commun Mass Spectrom. 2010;24:2849–2858. doi: 10.1002/rcm.4714
  • Werner RA, Brand WA. Referencing strategies and techniques in stable isotope ratio analysis. Rapid Commun Mass Spectrom. 2001;15:501–519. doi: 10.1002/rcm.258
  • Tenailleau EJ, Lancelin P, Robins RJ, Akoka S. Authentication of the origin of vanillin using quantitative natural abundance 13C NMR. J Agric Food Chem. 2004;52:7782–7787. doi: 10.1021/jf048847s
  • Martin GJ, Martin ML, Zhang B-L. Site-specific natural isotope fractionation of hydrogen in plant products studied by nuclear magnetic resonance. Plant Cell Environ. 1992;15:1037–1050. doi: 10.1111/j.1365-3040.1992.tb01654.x
  • Hayes JM. Fractionation et al.: an introduction to isotopic measurements and terminology. Spectra. 1982;8:3–8.
  • Nriagu JO, Rees CE, Mekhtiyeva VL, Lein AYu, Fritz P, Drimmie RJ, Pankina RG, Robinson BW, Krouse HR. Hydrosphere. In: Krouse HR, Grinenko VA, editors. Stable isotopes: natural and anthropogenic sulfur in the environment. SCOPE 43ct. Chichester: Wiley; 1991. p. 177–265.
  • Rayleigh JWSL. Theoretical considerations respecting the separation of gases by diffusion and similar processes. Philos Mag. 1896;42:493–498. doi: 10.1080/14786449608620944
  • Cook PF, Mallick S, Cho Y-K. Isotope effects in reactions catalyzed by transferases. In: Cook PF, editor. Enzyme mechanism from isotope effects. Boca Raton (FL): CRC Press; 1991. p. 419–430.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.