235
Views
4
CrossRef citations to date
0
Altmetric
Review Article

13C isotopic fractionation during biodegradation of agricultural wastes

, , &
Pages 201-213 | Received 21 Jul 2014, Accepted 11 Jan 2015, Published online: 13 Mar 2015

References

  • Fernandez I, Mahieu N, Cadisch G. Carbon isotopic fractionation during decomposition of plant materials of different quality. Glob Biogeochem Cycl. 2003;17:1.1–1.11. doi: 10.1029/2001GB001834
  • Henn MR, Chapela IH. Differential C isotope discrimination by fungi during decomposition of C3- and C4-derived sucrose. Appl Environ Microbiol. 2000;66:4180–4186. doi: 10.1128/AEM.66.10.4180-4186.2000
  • Coplen TB. Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun Mass Spectrom. 2011;25:2538–2560.
  • Farquhar GD, Ehleringer JR, Hubick KT. Carbon isotope discrimination and photosyntheses. Ann Rev Plant Physiol Plant Mol Biol. 1989;40:503–537. doi: 10.1146/annurev.pp.40.060189.002443
  • Badeck F-W, Tcherkez G, Nogués S, Piel C, Ghashghaie J. Post-photosynthetic fractionation of stable carbon isotopes between plant organs – a widespread phenomenon. Rapid Commun Mass Spectrom. 2005;19:1381–1391. doi: 10.1002/rcm.1912
  • Hobbie EA, Werner RA. Tansley review. Intramolecular, compound-specific, and bulk carbon isotope patterns in C3 and C4 plants: a review and synthesis. New Phytol. 2004;161:371–385. doi: 10.1111/j.1469-8137.2004.00970.x
  • Cernusak LA, Tcherkez G, Keitel C, Cornwell WK, Santiago LS, Knohl A, Barbour MM, Williams DG, Reich PB, Ellsworth DS, Dawson TE, Griffiths HG, Farquhar GD, Wright IJ. Why are non-photosynthetic tissues generally 13C enriched compared with leaves in C3 plants? Review and synthesis of current hypotheses. Funct Plant Biol. 2009;36:199–213. doi: 10.1071/FP08216
  • Park R, Epstein S. Metabolic fractionation of C13 & C12 in plants. Plant Physiol. 1961;36:133–138. doi: 10.1104/pp.36.2.133
  • DeNiro MJ, Epstein S. Mechanism of carbon isotope fractionation associated with lipid synthesis. Science. 1977;197:261–263. doi: 10.1126/science.327543
  • Benner R, Fogel ML, Sprague EK, Hodson RE. Depletion of 13C in lignin and its implications for stable carbon isotope studies. Nature. 1987;329:708–710. doi: 10.1038/329708a0
  • Gleixner G, Danier H-J, Werner RL, Schmidt H-L. Correlations between the 13C content of primary and secondary plant products in different cell compartments and that in decomposing basidiomycetes. Plant Physiol. 1993;102:1287–1290.
  • Wedin DA, Tieszen LL, Dewey B, Pastor J. Carbon isotope dynamics during grass decomposition and soil organic matter formation. Ecology. 1995;76:1383–1392. doi: 10.2307/1938142
  • Schweizer M, Fear J, Cadisch G. Isotopic (13C) fractionation during plant residue decomposition and its implications for soil organic matter studies. Rapid Commun Mass Spectrom. 1999;13:1284–1290. doi: 10.1002/(SICI)1097-0231(19990715)13:13<1284::AID-RCM578>3.0.CO;2-0
  • Collister JW, Rieley G, Stern B, Eglinton G, Fry B. Compound-specific δ13C analyses of leaf lipids from plants with differing carbon dioxide metabolisms. Org Geochem. 1994;21:619–627. doi: 10.1016/0146-6380(94)90008-6
  • Vogler EA, Hayes JM. Carbon isotopic compositions of carboxyl groups of biosynthesised fatty acids. Phys Chem Earth. 1980;12:697–704. doi: 10.1016/0079-1946(79)90150-2
  • Melzer E, Schmidt H-L. Carbon isotope effects on the pyruvate dehydrogenase reaction and their importance for relative carbon-13 depletion in lipids. J Biol Chem. 1987;262:8159–8164.
  • Gleixner G, Schmidt H-L. Carbon isotope effects on the fructose-1,6-biphosphate aldolase reaction, origin for non-statistical 13C distribution in carbohydrates. J Biol Chem. 1997;272:5382–5387. doi: 10.1074/jbc.272.9.5382
  • Staddon PL. Carbon isotopes in functional soil ecology. Trends Ecol Evol. 2004;19:148–154. doi: 10.1016/j.tree.2003.12.003
  • Rossmann A, Butzenlechner M, Schmidt H-L. Evidence for nonstatistical carbon isotope distribution in natural glucose. Plant Physiol. 1991;96:609–614. doi: 10.1104/pp.96.2.609
  • Gilbert A, Silvestre V, Robins RJ, Remaud GS. Accurate quantitative isotopic 13C NMR spectroscopy for the determination of the intramolecular distribution of 13C in glucose at natural abundance. Anal Chem. 2009;81:8978–8985. doi: 10.1021/ac901441g
  • Gilbert A, Silvestre V, Robins RJ, Tcherkez G, Remaud GS. A 13C NMR spectrometric method for the determination of intramolecular δ13C values in fructose from plant sucrose samples. New Phytol. 2011;191:579–588. doi: 10.1111/j.1469-8137.2011.03690.x
  • Gilbert A, Silvestre V, Segebarth N, Tcherkez G, Guillou C, Robins RJ, Akoka S, Remaud GS. The intramolecular 13C-distribution in ethanol reveals the influence of the CO2-fixation pathway and environmental conditions on the site-specific 13C variation in glucose. Plant Cell Environ. 2011;34:1104–1112. doi: 10.1111/j.1365-3040.2011.02308.x
  • Gilbert A, Robins RJ, Remaud GS, Tcherkez GGB. Intramolecular 13C pattern in hexoses from autotrophic and heterotrophic C3 plant tissues. Proc Natl Acad Sci USA. 2012;109:18204–18209. doi: 10.1073/pnas.1211149109
  • Schmidt H-L. Fundamentals and systematic of the non-statistical distributions of isotopes in natural compounds. Naturwissenschaften. 2003;90:537–552. doi: 10.1007/s00114-003-0485-5
  • Kohzu A, Yoshioka T, Ando T, Takahashi M, Koba K, Wada E. Natural 15N and 13C abundance of field-collected fungi and their ecological implications. New Phytol. 1999;144:323–330. doi: 10.1046/j.1469-8137.1999.00508.x
  • Henn MR, Chapela IH. Ecophysiology of 13C and 15N isotopic fractionation in forest fungi and the roots of the saprotrophic-mycorrhizal divide. Oecologia. 2001;128:480–487. doi: 10.1007/s004420100680
  • Kohzu A, Miyajima T, Tateishi T, Watanabe T, Takahashi M, Wada E. Dynamics of 13C natural abundance in wood decomposing fungi and their ecophysiological implications. Soil Biol Biochem. 2005;37:1598–1607. doi: 10.1016/j.soilbio.2005.01.021
  • Boström B, Comstedt D, Ekblad A. Can isotopic fractionation during respiration explain the 13C-enriched sporocarps of ectomycorrhizal and saprotrophic fungi? New Phytol. 2008;177:1012–1019. doi: 10.1111/j.1469-8137.2007.02332.x
  • Hobbie EA, Sánchez FS, Rygiewicz PT. Controls of isotopic patterns in saprotrophic and ectomycorrhizal fungi. Soil Biol Biochem. 2012;48:60–68. doi: 10.1016/j.soilbio.2012.01.014
  • Högberg P, Plamboeck AH, Taylor AFS, Fransson PMA. Natural 13C abundance reveals trophic status of fungi and host-origin of carbon in mycorrhizal fungi in mixed forests. Proc Natl Acad Sci USA. 1999;96:8534–8539. doi: 10.1073/pnas.96.15.8534
  • Hobbie EA, Macko SA, Shugart HH. Insights into nitrogen and carbon dynamics of ectomycorrhizal and saprotrophic fungi from isotopic evidence. Oecologia. 1999;118:353–360. doi: 10.1007/s004420050736
  • Hobbie EA, Weber NS, Trappe JM. Mycorrhizal vs. saprotrophic status of fungi: the isotopic evidence. New Phytol. 2001;150:601–610. doi: 10.1046/j.1469-8137.2001.00134.x
  • Taylor AFS, Fransson PM, Högberg P, Högberg MN, Plamboeck AH. Species level patterns in 13C and 15N abundance of ectomycorrhizal and saprotrophic fungal sporocarps. New Phytol. 2003;159:757–774. doi: 10.1046/j.1469-8137.2003.00838.x
  • Hobbie EA, Sánchez FS, Rygiewicz PT. Carbon use, nitrogen use, and isotopic fractionation of ectomycorrhizal and saprotrophic fungi in natural abundance and 13C-labelled cultures. Mycol Res. 2004;108:725–736. doi: 10.1017/S0953756204000590
  • Abelson PH, Hoering TC. Carbon isotope fractionation in formation of amino acids by photosynthetic organisms. Proc Natl Acad Sci USA. 1961;47:623–632. doi: 10.1073/pnas.47.5.623
  • Blair N, Leu A, Muñoz E, Olsen J, Kwong E, Des Marais D. Carbon isotopic fractionation in heterotrophic microbial metabolism. Appl Environ Microbiol. 1985;50:996–1001.
  • Monson KD, Hayes JM. Carbon isotope fractionation in the biosynthesis of bacterial fatty acids. Ozonolysis of unsaturated fatty acids as a means of determining the intramolecular distribution of carbon isotopes. Geochim Cosmochim Acta. 1982;46:139–149. doi: 10.1016/0016-7037(82)90241-1
  • Fernandez I, Cadisch G. Discrimination against 13C during degradation of simple and complex substrates by two white rot fungi. Rapid Commun Mass Spectrom. 2003;17:2614–2620. doi: 10.1002/rcm.1234
  • Henn MR, Gleixner G, Chapela IH. Growth-dependent stable isotope fractionation by basidiomycete fungi: δ13C pattern and physiological process. Appl Environ Microbiol. 2002;68:4956–4964. doi: 10.1128/AEM.68.10.4956-4964.2002
  • Abraham W-R, Hesse C. Isotope fractionations in the biosynthesis of cell components by different fungi: a basis for environmental carbon flux studies. FEMS Microbiol Ecol. 2003;46:121–128. doi: 10.1016/S0168-6496(03)00203-4
  • Hobbie EA, Watrud LS, Maggard S, Shiroyama T, Rygiewicz PT. Carbohydrate use and assimilation by litter and soil fungi assessed by carbon isotopes and BIOLOG assays. Soil Biol Biochem. 2003;35:303–311. doi: 10.1016/S0038-0717(02)00281-X
  • Jones RJ, Ludlow MM, Troughton JH, Blunt CG. Estimation of the proportion of C3 and C4 plant species in the diet of animals from the ratio of natural 12C and 13C isotopes in the faeces. J Agric Sci. 1979;92:91–100. doi: 10.1017/S0021859600060536
  • Lynch DH, Voroney RP, Warman PR. Use of 13C and 15N natural abundance techniques to characterize carbon and nitrogen dynamics in composting and in compost-amended soils. Soil Biol Biochem. 2006;38:103–114. doi: 10.1016/j.soilbio.2005.04.022
  • Lopez-Capel E, Abbott GD, Thomas KM, Manning DAC. Coupling of thermal analysis with quadrupole mass spectrometry and isotope ratio mass spectrometry for simultaneous determination of evolved gases and their carbon isotope composition. J Anal Appl Pyrol. 2006;75:82–89. doi: 10.1016/j.jaap.2005.04.004
  • Huang Y, Eglinton G, Ineson P, Latter PM, Bol R, Harkness DD. Absence of carbon isotope fractionation of individual n-alkanes in a 23-year field decomposition experiment with Calluna vulgaris. Org Geochem. 1997;26:497–501. doi: 10.1016/S0146-6380(97)00027-2
  • Ågren GI, Bosatta E, Balesdent J. Isotopic discrimination during decomposition of organic matter: a theoretical analysis. Soil Sci Soc Am J. 1996;60:1121–1126. doi: 10.2136/sssaj1996.03615995006000040023x
  • Mary B, Mariotti A, Morel JL. Use of 13C variations at natural abundance for studying the biodegradation of root mucilage, roots and glucose in soil. Soil Biol Biochem. 1992;24:1065–1072. doi: 10.1016/0038-0717(92)90037-X
  • Kristiansen SM, Brandt M, Hansen EM, Magid J, Christensen BT. 13C signature of CO2 evolved from incubated maize residues and maize-derived sheep faeces. Soil Biol Biochem. 2004;36:99–105. doi: 10.1016/j.soilbio.2003.07.002
  • Risk D, Nickerson N, Van Pelt A. Exciting development: Real-time carbon isotope measurements for quantifying soil carbon – A strategic asset in combating greenhouse gas emissions and mitigating climate change. Vienna: IAEA Soils Newsletter 2010;33(1):6–8. Available from: http://www-naweb.iaea.org/nafa/swmn/public/snl-33-1.pdf.
  • Wahl EH, Fidric B, Rella CW, Koulikov S, Kharlamov B, Tan S, Kachanov AA, Richman BA, Crosson ER, Paldus BA, Kalaskar S, Bowling DR. Application of cavity ring-down spectroscopy to high precision isotope ratio measurement of 13C/12C in carbon dioxide. Isot Environ Health Stud. 2006;42:21–35. doi: 10.1080/10256010500502934
  • Vogel FR, Huang L, Ernst D, Giroux L, Racki S, Worthy DEJ. Evaluation of a cavity ring-down spectrometer for in situ observations of 13CO2. Atmos Meas Tech. 2013;6:301–308. doi: 10.5194/amt-6-301-2013

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.