341
Views
7
CrossRef citations to date
0
Altmetric
Articles

Multiple sulphur and oxygen isotopes reveal microbial sulphur cycling in spring waters in the Lower Engadin, Switzerland

, , , , , , , , & show all
Pages 75-93 | Received 02 Oct 2014, Accepted 23 Feb 2015, Published online: 29 Apr 2015

References

  • Wexsteen P, Jaffe FC, Mazor E. Geochemistry of cold CO2-rich springs of the Scuol-Tarasp region, Lower Engadine, Swiss Alps. J Hydrol. 1988;104:77–92. doi: 10.1016/0022-1694(88)90158-8
  • Bissig P. Die CO2-reichen Mineralquellen von Scuol-Tarasp (Unterengadin, Kt. GR). Bull Angew Geol. 2004;9:39–47.
  • Bissig P, Goldscheider N, Mayoraz J, Surbeck H, Vuataz F-D. Carbogaseous spring waters, coldwater geysers and dry CO2 exhalations in the tectonic window of the Lower Engadine Valley, Switzerland. Eclogae Geol Helv. 2006;99:143–155. doi: 10.1007/s00015-006-1184-y
  • Clark I, Fritz P. Environmental isotopes in hydrogeology. London: CRC Press LLC; 1997.
  • Calmels D, Gaillardet J, Brenot A, France-Lanord C. Sustained sulfide oxidation by physical erosion processes in the Mackenzie River basin: climatic perspectives. Geol. 2007;35:1003–1006. doi: 10.1130/G24132A.1
  • Tuttle MLW, Breit GN, Cozzarelli IM. Processes affecting δ34S and δ18O values of dissolved sulfate in alluvium along the Canadian River, central Oklahoma, USA. Chem Geol. 2009;265:455–467. doi: 10.1016/j.chemgeo.2009.05.009
  • Turchyn AV, Brüchert V, Lyons TW, Engel GS, Balci N, Schrag DP, Brunner B. Kinetic oxygen isotope effects during dissimilatory sulfate reduction: a combined theoretical and experimental approach. Geochim Cosmochim Acta. 2010;74:2011–2024. doi: 10.1016/j.gca.2010.01.004
  • Yuan F, Mayer B. Chemical and isotopic evaluation of sulfur sources and cycling in the Pecos River, New Mexico, USA. Chem Geol. 2012;291:13–22. doi: 10.1016/j.chemgeo.2011.11.014
  • Hosono T, Lorphensriand O, Onodera S, Okawa H, Nakano T, Yamanaka T, Tsujimura M, Taniguchi M. Different isotopic evolutionary trends of δ34S and δ18O compositions of dissolved sulfate in an anaerobic deltaic aquifer system. Appl Geochem. 2014;46:30–42. doi: 10.1016/j.apgeochem.2014.04.012
  • Claypool GE, Holser WT, Kaplan IR, Sakai H, Zak I. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chem Geol. 1980;28:190–260. doi: 10.1016/0009-2541(80)90047-9
  • Kampschulte A, Strauss H. The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates. Chem Geol. 2004;204:255–286. doi: 10.1016/j.chemgeo.2003.11.013
  • Strauss H. 4 Ga of seawater evolution: evidence from the sulfur isotopic composition of sulfate. Geol Soc Am Spec Pap. 2004;379:195–205.
  • Longinelli A. Oxygen-18 and sulphur-34 in dissolved oceanic sulphate and phosphate. In: Fritz P, Fontes JC, editors. Handbook of environmental isotope geochemistry. Amsterdam: Elsevier; 1989. p. 219–255.
  • Strauss H. Geological evolution from isotope proxy signals: sulfur. Chem Geol. 1999;161:89–101. doi: 10.1016/S0009-2541(99)00082-0
  • Canfield DE. Biogeochemistry of sulfur isotopes. Rev Mineral Geochem. 2001;43:607–636. doi: 10.2138/gsrmg.43.1.607
  • Seal RR II. Sulfur isotope geochemistry of sulfide minerals. Rev Mineral Geochem. 2006;61:633–677. doi: 10.2138/rmg.2006.61.12
  • Kroopnick P, Craig H. Atmospheric oxygen: isotopic composition and solubility fractionation. Science. 1972;175:54–55. doi: 10.1126/science.175.4017.54
  • Luz B, Barkan E. The isotopic composition of atmospheric oxygen. Global Biogeochem Cycles. 2011;25:GB3001.
  • Epstein S, Mayeda T. Variation of O18 content of waters from natural sources. Geochim Cosmochim Acta. 1953;4:213–224. doi: 10.1016/0016-7037(53)90051-9
  • Craig H. Isotopic variations in meteoric waters. Science. 1961;133:1702–1703. doi: 10.1126/science.133.3465.1702
  • Balci B, Shanks WC III, Mayer B, Mandernack KW. Oxygen and sulfur isotope systematics of sulfate produced by bacterial and abiotic oxidation of pyrite. Geochim Cosmochim Acta. 2007;71:3796–3811. doi: 10.1016/j.gca.2007.04.017
  • Heidel C, Tichomirowa M. The role of dissolved molecular oxygen in abiotic pyrite oxidation under acid pH conditions – Experiments with 18O-enriched molecular oxygen. Appl Geochem. 2010;25:1664–1675. doi: 10.1016/j.apgeochem.2010.08.014
  • Johnston DT, Farquhar J, Wing BA, Kaufman AJ, Canfield DE, Habicht KS. Multiple sulfur isotope fractionations in biological systems: a case study with sulfate reducers and sulfur disproportionators. Am J Sci. 2005;305:645–660. doi: 10.2475/ajs.305.6-8.645
  • Kaplan IR, Rittenberg SC. Microbiological fractionation of sulphur isotopes. J Gen Microbiol. 1964;34:195–212. doi: 10.1099/00221287-34-2-195
  • Sim MS, Bosak T, Ono S. Large sulfur isotope fractionation does not require disproportionation. Science. 2011;333:74–77. doi: 10.1126/science.1205103
  • Antler G, Turchyn AV, Rennie V, Herut B, Sivan O. Coupled sulfur and oxygen isotope insight into bacterial sulfate reduction in the natural environment. Geochim Cosmochim Acta. 2013;118:98–117. doi: 10.1016/j.gca.2013.05.005
  • Farquhar J, Canfield DE, Masterson A, Bao H, Johnston D. Sulfur and oxygen isotope study of sulfate reduction in experiments with natural populations from Faellestrand, Denmark. Geochim Cosmochim Acta. 2008;72:2805–2821. doi: 10.1016/j.gca.2008.03.013
  • Fry B, Ruf W, Gest H, Hayes JM. Sulfur isotope effects associated with oxidation of sulfide by O2 in aqueous solution. Chem Geol. 1988;73:205–210.
  • Zerkle AL, Farquhar J, Johnston DT, Cox RP, Canfield DE. Fractionation of multiple sulfur isotopes during phototrophic oxidation of sulfide and elemental sulfur by a green sulfur bacterium. Geochim Cosmochim Acta. 2009;73:291–306. doi: 10.1016/j.gca.2008.10.027
  • Cypionka H, Smock AM, Böttcher ME. A combined pathway of sulfur compound disproportionation in Desulfovibrio desulfuricans. FEMS Microbiol Lett. 1998;166:181–186. doi: 10.1111/j.1574-6968.1998.tb13888.x
  • Habicht KS, Canfield DE, Rethmeier J. Sulfur isotope fractionation during bacterial reduction and disproportionation of thiosulfate and sulfite. Geochim Cosmochim Acta. 1998;62:2585–2595. doi: 10.1016/S0016-7037(98)00167-7
  • Zerkle AL, Kamyshny A, Kump LR, Farquhar J, Oduro H, Arthur MA. Sulfur cycling in a stratified euxinic lake with moderately high sulfate: constraints from quadruple S isotopes. Geochim Cosmochim Acta.
  • Richter A. Allgäuer Alpen. Berlin, Stuttgart: Gebr. Borntraeger; 1984.
  • Canfield DE, Raiswell R, Westrich JT, Reaves CM, Berner RA. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chem Geol. 1986;54:149–155. doi: 10.1016/0009-2541(86)90078-1
  • Thode HG, Monster J, Dunford HB. Sulphur isotope geochemistry. Geochim Cosmochim Acta. 1961;25:159–174. doi: 10.1016/0016-7037(61)90074-6
  • Ono S, Wing B, Johnston D, Farquhar J, Rumble D. Mass-dependent fractionation of quadruple stable sulfur isotope system as a new tracer of sulfur biogeochemical cycles. Geochim Cosmochim Acta. 2006;70:2238–2252. doi: 10.1016/j.gca.2006.01.022
  • Hulston JR, Thode HG. Variations in S33, S34 and S36 contents of meteorites and their relation to chemical and nuclear effects. J Geophys Res. 1965;70:3475–3484. doi: 10.1029/JZ070i014p03475
  • Farquhar J, Bao H, Thiemens M. Atmospheric influence of Earth's earliest sulfur cycle. Science. 2000;289:756–758. doi: 10.1126/science.289.5480.756
  • Strauss H. The isotopic composition of sedimentary sulfur through time. Palaeogeogr Palaeoclimat Palaeoecol. 1997;132:97–118. doi: 10.1016/S0031-0182(97)00067-9
  • Hegler H, Lösekam-Behrens T, Hanselmann K, Behrens S, Kappler A. Influence of seasonal and geochemical changes on the geomicrobiology of an iron carbonate mineral water spring. Appl Environ Microbiol. 2012;78:7185–7196. doi: 10.1128/AEM.01440-12
  • Cortecci G, Dinelli E, Bencini A, Adorni-Braccesi A, La Ruffa G. Natural and anthropogenic SO4 sources in the Arno River catchment, northern Tuscany, Italy: a chemical and isotopic reconnaissance. Appl Geochem. 2002;17:79–92. doi: 10.1016/S0883-2927(01)00100-7
  • Johnston DT, Farquhar J, Canfield DE. Sulfur isotope insights into microbial sulfate reduction: When microbes meet models. Geochim Cosmochim Acta. 2007;71:3929–3947. doi: 10.1016/j.gca.2007.05.008
  • Johnston DT, Farquhar J, Habicht KS, Canfield DE. Sulphur isotopes and the search for life: strategies for identifying sulphur metabolisms in the rock record and beyond. Geobiology. 2008;6:425–435. doi: 10.1111/j.1472-4669.2008.00171.x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.