124
Views
4
CrossRef citations to date
0
Altmetric
Articles

Hydrothermal gases in a shallow aquifer at Mt. Amiata, Italy: insights from stable isotopes and geochemical modellingFootnote

, &
Pages 414-426 | Received 26 Jun 2015, Accepted 20 Sep 2015, Published online: 10 Mar 2016

References

  • Bertini G, Cappetti G, Dini I, Lovari F. Deep drilling results and updating of geothermal knowledge of the Monte Amiata area. In: Barbier R, editor. Proceedings of the World Geothermal Congress; May 18–31, Vol. 2; Florence: International Geothermal Association; 1995. p. 1283–1286.
  • Bertani R. Geothermal power generation in the world 2005–2010 update report. Geothermics. 2012;41:1–29. doi: 10.1016/j.geothermics.2011.10.001
  • Gianelli G, Puxeddu M, Batini F, et al. Geological model of a young volcano-plutonic system: the geothermal region of Monte Amiata (Tuscany, Italy). Geothermics. 1988;17:719–734. doi: 10.1016/0375-6505(88)90033-8
  • Cadoux A, Pinti DL. Hybrid character and pre-eruptive events of Mt Amiata volcano (Italy) inferred from geochronological, petro-geochemical and isotopic data. J Volcanol Geotherm Res. 2009;179:169–190. doi: 10.1016/j.jvolgeores.2008.10.018
  • Ferrari L, Conticelli S, Burlamacchi L, Manetti P. Volcanological evolution of the Monte Amiata, Southern Tuscany: new geological and petrochemical data. Acta Vulcanol. 1996;8:41–56.
  • Calamai A, Cataldi R, Squarci P, Taffi L. Geology, geophysics and hydrogeology of the Monte Amiata gothermal field. Geothermics. 1970;1:1–9.
  • Boni C, Bono P, Capelli G. Schema idrogeologico dell'Italia centrale [Hydrogeological scheme of central Italy]. Mem Soc Geol It. 1986;35:991–1012. Italian.
  • Chiodini G, Comodi P, Giaquinto S, Mattioli B, Zanzari AR. Cold groundwater temperatures and conductive heat flow in the Mt. Amiata geothermal area, Tuscany, Italy. Geothermics. 1988;17:645–656. doi: 10.1016/0375-6505(88)90049-1
  • Frondini F, Caliro S, Cardellini C, Chiodini G, Morgantini N. Carbon dioxide degassing and thermal energy release in the Monte Amiata volcanic-geothermal area (Italy). Appl Geochem. 2004;24:860–875. doi: 10.1016/j.apgeochem.2009.01.010
  • La Felice S, Montanari D, Battaglia S, Bertini G, Gianelli G. Fracture permeability and water–rock interaction in a shallow volcanic groundwater reservoir and the concern of its interaction with the deep geothermal reservoir of Mt. Amiata, Italy. J Volcanol Geotherm Res. 2014;284:95–105. doi: 10.1016/j.jvolgeores.2014.07.017
  • Parkhurst DL, Appelo CAJ. Description of input and examples for PHREEQC version 3 – A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Denver, CO: U.S. Geological Survey techniques and methods; 2013. Book 6, Chapter A43.
  • Wolery TJ, Jove-Colon CF, Jareck RL. Qualification of thermodynamic data for geochemical modeling of mineral–water interactions in dilute systems. Las Vegas, Nevada: Bechtel SAIC Company; 2004. (ANL-WIS-GS-000003 REV00).
  • Chacko T, Cole DR, Horita J. Equilibrium oxygen, hydrogen and carbon isotope fractionation factors applicable to geologic systems. In: Walley JW, Cole DR, editors. Reviews in Mineralogy and Geochemistry. Washington, DC: Mineralogical Society of America; 2001;43. p. 1–82.
  • Ohmoto H, Lasaga AC. Kinetics of reactions between aqueous sulfates and sulfides in hydrothermal systems. Geochim Cosmochim Acta. 1982;46:1727–1745. doi: 10.1016/0016-7037(82)90113-2
  • Lasaga AC. Chemical kinetics of water–rock interactions. J Geophys Res. 1984;89:4009–4025. doi: 10.1029/JB089iB06p04009
  • Steefel CI, Lasaga AC. A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions with application to reactive flow in single phase hydrothermal systems. Am J Sci. 1994;294:529–592. doi: 10.2475/ajs.294.5.529
  • Brantley SL, Kubicki JD, White AF. Kinetics of water–rock interaction. New York: Springer; 2008.
  • Sonnenthal EL, Ito A, Spycher N, et al. Approaches to modeling coupled thermal, hydrological, and chemical processes in the drift scale heater test at Yucca Mountain. Int J Rock Mech Min. 2005;42:698–719. doi: 10.1016/j.ijrmms.2005.03.009
  • Sonnenthal EL, Ortoleva PJ. Numerical simulation of overpressured compartments in sedimentary basins. In: Ortoleva PJ, editor. Basin compartments and seals. Tulsa: American Association of Petroleum Geologists; 1994. (AAPG Memoir 61). p. 403–416.
  • Palandri JL, Kharaka YK. A compilation of rate parameters of water mineral interaction kinetics for application to geochemical modeling. US Geological Survey Open File Report 2004–1068; 2004.
  • Wolff-Boenisch D, Gislason S, Oelkers EH, Putnis C. The dissolution rates of natural glasses as a function of their composition at pH 4 and 10.6, and temperatures from 25 to 74°C. Geochim Cosmochim Acta. 2004;68:4843–4858. doi: 10.1016/j.gca.2004.05.027
  • Doherty J. PEST – Model-Independent Parameter Estimation. User Manual. 5th ed. Brisbane: Watermark Numerical Computing; 2005.
  • Panichi C, Tongiorgi E. Carbon isotopic composition of CO2 from springs, fumaroles, mofettes, and travertines of central and southern Italy: a preliminary prospection method of geothermal areas. In: Proceedings of the 2nd U.N. symposium on the development and use of geothermal energy; 1975 May 20–29; San Francisco, CA, p. 815–825.
  • Battaglia S, Gherardi F, Gianelli G, Leoni L, Origlia F. Clay mineral reactions in an active geothermal area (Mt. Amiata, southern Tuscany, Italy). Clay Miner. 2007;42:353–372. doi: 10.1180/claymin.2007.042.3.08
  • Brogi A, Liotta D, Meccheri M, Fabbrini L. Transtensional shear zones controlling volcanic eruptions: the Middle Pleistocene Mt Amiata volcano (inner Northern Apennines, Italy). Terra Nova. 2010;22:137–146. doi: 10.1111/j.1365-3121.2010.00927.x
  • Gambardella B, Marini L, Baneschi I. Dissolved potassium in the shallow groundwaters circulating in the volcanic rocks of Central–Southern Italy. Appl Geochem. 2005;20:875–897. doi: 10.1016/j.apgeochem.2004.12.001
  • Orlando A, Conte AM, Borrini D, Perinelli C, Gianelli G, Tassi F. Experimental investigation of CO2-rich fluids production in a geothermal area: the Mt Amiata (Tuscany, Italy) case study. Chem Geol. 2010;274:177–186. doi: 10.1016/j.chemgeo.2010.04.005
  • Gherardi F, Panichi C, Gonfiantini R, Magro G, Scandiffio G. Isotope systematics of C-bearing gas compounds in the geothermal fluids of Larderello, Italy. Geothermics. 2005;34:442–470. doi: 10.1016/j.geothermics.2004.09.005
  • Boschetti T, Cortecci G, Toscani L, Iacumin P. Isotopic composition of upper triassic sulfates from northern Apennines (Italy): palaeogeographic and hydrogeological implications. Geol Acta. 2011;9:129–147.
  • Masi U, Tucci P. Geochemical features of the “Calcare Cavernoso” from the Monte Argentario area (southern Tuscany) and genetic implications. Geol Romana. 1993;29:155–161.
  • Wilhelm E, Battino R, Wilcock RJ. Low-pressure solubility of gases in liquid water. Chem Rev. 1977;77:219–262. doi: 10.1021/cr60306a003
  • Böttcher ME, Bernasconi S, Brumsack HJ. Carbon, sulfur and oxygen isotope geochemistry in interstitial waters from the western Mediterranean. Proc Ocean Drill Prog Sci Results. 1999;161:413–422.
  • Gavrieli I, Starinsky A, Spiro B, Ainzenshtat Z, Nielsen H. Mechanisms of sulfate removal from subsurface calcium chloride brines: Heletz-Kokhav oilfields, Israel. Geochim Cosmochim Acta. 1995;59:3525–3533. doi: 10.1016/0016-7037(95)00229-S

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.