251
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

A study of the characteristics of karst groundwater circulation based on multi-isotope approach in the Liulin spring area, North China

, , &
Pages 271-284 | Received 12 Apr 2014, Accepted 19 Sep 2014, Published online: 15 Dec 2014

References

  • Clark I, Fritz P. Environmental isotopes in hydrology. Boca Raton, FL: Lewis Publishers; 1997.
  • Wang H. [Introduction to isotopic hydrogeology]. Beijing: Geology Publishing House; 1991.
  • Gu W, Pang Z, Wang Q, Song X, Ye N, Zhang Z, Lu J, Lu B, Qu S. [Isotope hydrology]. Beijing: Science Press; 2011.
  • Marfia AM, Krishnamurthy RV, Atekwana EA, Panton WF. Isotopic and geochemical evolution of ground and surface waters in a karst dominated geological setting: a case study from Belize, Central America. Appl Geochem. 2004;19:937–946. doi: 10.1016/j.apgeochem.2003.10.013
  • Gammons CH, Brown A, Poulson SR, Henderson TH. Using stable isotopes (S, O) of sulfate to track local contamination of the Madison karst aquifer, Montana, from abandoned coal mine drainage. Appl Geochem. 2013;31:228–238. doi: 10.1016/j.apgeochem.2013.01.008
  • Cartwright I, Weaver TR, Cendón DI, Fifield LK, Tweed SO, Petrides B, Swane I. Constraining groundwater flow, residence times, inter-aquifer mixing, and aquifer properties using environmental isotopes in the southeast Murray Basin, Australia. Appl Geochem. 2012;27:1698–1709. doi: 10.1016/j.apgeochem.2012.02.006
  • Carucci V, Petitta M, Aravena R. Interaction between shallow and deep aquifers in the Tivoli Plain (Central Italy) enhanced by groundwater extraction: a multi-isotope approach and geochemical modeling. Appl Geochem. 2012;27:266–280. doi: 10.1016/j.apgeochem.2011.11.007
  • Chelnokov G, Kharitonova N, Bragin I, Vasileva M. Deuterium, oxygen-18 and tritium in precipitation, surface and groundwater in the Far East of Russia. Procedia Earth Planet Sci. 2013;7:151–154. doi: 10.1016/j.proeps.2013.03.209
  • Ettayfi N, Bouchaou L, Michelot J, Tagma T, Warner N, Boutaleb S, Massault M, Lgourna Z, Vengosh A. Geochemical and isotopic (oxygen, hydrogen, carbon, strontium) constraints for the origin, salinity, and residence time of groundwater from a carbonate aquifer in the Western Anti-Atlas Mountains, Morocco. J Hydrol. 2012;438–439:97–111. doi: 10.1016/j.jhydrol.2012.03.003
  • Falcone RA, Falgiani A, Parisse B, Petitta M, Spizzico M, Tallini M. Chemical and isotopic (oxygen-18, deuterium, carbon-13, radon-222) multi-tracing for groundwater conceptual model of carbonate aquifer (Gran Sasso INFN underground laboratory–central Italy). J Hydrol. 2008;357:368–388. doi: 10.1016/j.jhydrol.2008.05.016
  • Kendall C, Coplen TB. Distribution of oxygen-18 and deuterium in river waters across the United States. Hydrol Processes. 2001;15:1363–1393. doi: 10.1002/hyp.217
  • Marques JM, Graça H, Eggenkamp HG, Neves O, Carreira PM, Matias MJ, Mayer B, Nunes D, Trancoso VN. Isotopic and hydrochemical data as indicators of recharge areas, flow paths and water–rock interaction in the Caldas da Rainha–Quinta das Janelas thermomineral carbonate rock aquifer (Central Portugal). J Hydrol. 2013;476:302–313. doi: 10.1016/j.jhydrol.2012.10.047
  • Sappa G, Barbieri M, Ergul S, Ferranti F. Hydrogeological conceptual model of groundwater from carbonate aquifers using environmental isotopes (oxygen-18, deuterium) and chemical tracers: a case study in southern Latium Region, central Italy. J Water Resour Prot. 2012;4:695–716. doi: 10.4236/jwarp.2012.49080
  • Pu T, He Y, Zhang T, Wu J, Zhu G, Chang L. Isotopic and geochemical evolution of ground and river waters in a karst dominated geological setting: a case study from Lijiang basin, South-Asia monsoon region. Appl Geochem. 2013;33:199–212. doi: 10.1016/j.apgeochem.2013.02.013
  • Prtoljan B, Kapelj S, Dukarić F, Vlahović I, Mrinjek E. Hydrogeochemical and isotopic evidences for definition of tectonically controlled catchment areas of the Konavle area springs (SE Dalmatia, Croatia). J Geochem Explor. 2012;112:285–296. doi: 10.1016/j.gexplo.2011.09.006
  • Yoshimura K, Nakao S, Noto M, Inokura Y, Urata K, Chen M, Lin P. Geochemical and stable isotope studies on natural water in the Taroko Gorge karst area, Taiwan – chemical weathering of carbonate rocks by deep source CO2 and sulfuric acid. Chem Geol. 2001;177:415–430. doi: 10.1016/S0009-2541(00)00423-X
  • Li X, Liu C, Harue M, Li S, Liu X. The use of environmental isotopic (C, Sr, S) and hydrochemical tracers to characterize anthropogenic effects on karst groundwater quality: A case study of the Shuicheng Basin, SW China. Appl Geochem. 2010;25:1924–1936. doi: 10.1016/j.apgeochem.2010.10.008
  • Lee ES, Krothe NC. A four-component mixing model for water in a karst terrain in south-central Indiana, USA. Using solute concentration and stable isotopes as tracers. Chem Geol. 2001;179:129–143. doi: 10.1016/S0009-2541(01)00319-9
  • Koh YK, Choi BY, Yun S, Choi HS, Mayer B, Ryoo SW. Origin and evolution of two contrasting thermal groundwaters (CO2-rich and alkaline) in the Jungwon area, South Korea: Hydrochemical and isotopic evidence. J Volcanol Geoth Res. 2008;178:777–786. doi: 10.1016/j.jvolgeores.2008.09.008
  • Gonfiantini R, Zuppi GM. Carbon isotope exchange rate of DIC in karst groundwater. Chem Geol. 2003;197:319–336. doi: 10.1016/S0009-2541(02)00402-3
  • Fonyuy EW, Atekwana EA. Dissolved inorganic carbon evolution and stable carbon isotope fractionation in acid mine drainage contaminated streams: insights from a laboratory study. Appl Geochem. 2008;23:2634–2648. doi: 10.1016/j.apgeochem.2008.05.012
  • Craig H. The geochemistry of the stable carbon isotopes. Geochim Cosmochim Acta. 1953;3:53–92. doi: 10.1016/0016-7037(53)90001-5
  • Kattan Z. Environmental isotope study of the major karst springs in Damascus limestone aquifer systems: case of the Figeh and Barada springs. J Hydrol. 1997;193:161–182. doi: 10.1016/S0022-1694(96)03137-X
  • Yang Y, Shen Z, Weng D, Hou G, Zhao Z, Wang D, Pang Z. Oxygen and hydrogen isotopes of waters in the Ordos Basin, China: implications for recharge of groundwater in the north of Cretaceous Groundwater Basin. Acta Geol Sin. 2009;83:103–113. doi: 10.1111/j.1755-6724.2009.00012.x
  • Lin L, Wang J. [Analysis of isotope and water chemistry in karst groundwater in Shanxi-Shaanxi george]. Geotech Invest Surv. 2004:27–29. Chinese.
  • Ma T, Wang Y, Guo Q, Yan C, Ma R, Huang Z. Hydrochemical and isotopic evidence of origin of thermal karst water at Taiyuan, northern China. J Earth Sci. 2009;20:879–889. doi: 10.1007/s12583-009-0074-4
  • Hou G, Zhang M, Liu F, Wang Y, Liang Y. [Groundwater exploration in the Ordos basin]. Beijing: Geology Publishing House; 2008.
  • Groundwater exploration project in the Ordos basin (China). Karst groundwater expliotation of Liulin-Wubu district in Shanxi and Shaanxi province. Taiyuan: Geological survey institute of Shanxi province (China); 2004.
  • Gran G. Determination of the equivalence point in potentiometric titrations. Analyst. 1952;77:661–671. doi: 10.1039/an9527700661
  • Brand WA, Coplen BT, Vogl J, Rosner M, Prohaska T. Assessment of international reference materials for isotope-ratio analysis (IUPAC Technical Report). Pure Appl Chem. 2014;86:425–467. doi: 10.1515/pac-2013-1023
  • Coplen TB. Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun Mass Spectrom. 2011;25:2538–2560.
  • The GNIP database: Global Network of Isotopes in Precipitation [Internet]. Vienna: International atomic energy agency (IAEA)/World Meteorological Organization (WMO). [cited 1986∼1988]. Available from: http://www.iaea.org/water
  • Craig H. Isotopic variations in meteoric waters. Science. 1961;133:1702–1703. doi: 10.1126/science.133.3465.1702
  • Zheng S, Hou F, Ni B. [Study on stable hydrogen and oxygen isotopes in precipitation in China]. Chin Sci Bull. 1983;28:801–806. Chinese.
  • Pienitz R, Douglas MSV, Soml JP. Long-term environmental change in Aritic and Antarctic lakes. Dordrecht: Kluwer Academic Publishers; 2003.
  • Mook WG. Environmental isotopes in the hydrological cycle. Paris: United Nations Educational, Scientific and Cultural Organization; 2000.
  • Van Geldern R, Kuhlemann J, Schiebel R, Taubald H, Barth JAC. Stable water isotope patterns in climate change hotspot: the isotope hydrology framework of Corsica (western Mediterranean). Isot Environ Health Stud. 2014;50:184–200. doi: 10.1080/10256016.2013.839559
  • Huang P, Chen J, Ning C. [The analysis of hydrogen and oxygen isotopes in the groundwater of Jiaozuo mine area]. J Chin Coal Soc. 2012;37:770–774. Chinese.
  • Amundson R, Stern L, Baisden T, Wang Y. The isotopic composition of soil and soil-respired CO2. Geoderma. 1998;82:83–114. doi: 10.1016/S0016-7061(97)00098-0
  • Mook WG, Bommerson JC, Staverman WH. Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Planet Sci Lett. 1974;22:168–175. doi: 10.1016/0012-821X(74)90078-8
  • Vogel JC, Grootes PM, Mook WG. Isotope fractionation between gaseous and dissolved carbon dioxide. Z Phys. 1970;230:225–238. doi: 10.1007/BF01394688
  • Rubinson M, Clayton RN. Carbon-13 fractionation between aragonite and calcite. Geochim Cosmochim Acta. 1969;33:997–1002. doi: 10.1016/0016-7037(69)90109-4
  • Emrich K, Ehhait D, Vogel JC. Carbon isotope fractionation during the precipitation of calcuim carbonate. Earth Planet Sci Lett. 1970;8:363–371. doi: 10.1016/0012-821X(70)90109-3
  • Libby WF, Johnson F. Radiocarbon dating. Chicago: University of Chicago Press; 1955.
  • Stenström KE, Skog G, Georgiadou E, Genberg J, Johansson A. A guide to radiocarbon units and calculations. Lund: Lund University, Department of Physics, Division of Nuclear Physics; 2011.
  • Mebus AG. An overview of carbon-14 analysis in the study of groundwater. Radiocarbon. 2000;42:99–114.
  • Pearson FJ, Noronha CJ, Andrews RW. Mathematical modeling of the distribution of natural carbon-14, uranium-234, and uranium-238 in regional groundwater system. Radiocarbon. 1983;25:291–300.
  • Buckau G, Artinger R, Kim JI, Geyer S, Fritz P, Wolf M, Frenzel B. Development of climatic and vegetation conditions and the geochemical and isotopic composition in the Franconian Albvorland aquifer system. Appl Geochem. 2000;15:1191–1201. doi: 10.1016/S0883-2927(99)00116-X

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.