191
Views
9
CrossRef citations to date
0
Altmetric
Articles

Comparison of δ13C and δ18O from cellulose, whole wood, and resin-free whole wood from an old high elevation Pinus uncinata in the Spanish central PyreneesFootnote*

, , , , &
Pages 694-705 | Received 23 Jan 2015, Accepted 13 Feb 2016, Published online: 19 Apr 2016

References

  • Esper J, Frank DC, Battipaglia G, et al. Low-frequency noise in δ13C and δ18O tree ring data: a case study of Pinus uncinata in the Spanish pyrenees. Global Biogeochem Cycl. 2010;24:GB4018. doi: 10.1029/2010GB003772
  • Leonelli G, Battipaglia G, Siegwolf RTW, et al. Climatic isotope signals in tree rings masked by air pollution: a case study conducted along the Mont Blanc Tunnel access road (Western Alps, Italy). Atmos Environ. 2012;61:169–179. doi: 10.1016/j.atmosenv.2012.07.023
  • Hafner P, Robertson I, McCarroll D, et al. Climate signals in the ring widths and stable carbon, hydrogen and oxygen isotopic composition of Larix decidua growing at the forest limit in the southeastern European Alps. Trees. 2011;25:1141–1154. doi: 10.1007/s00468-011-0589-z
  • Kress A, Saurer M, Siegwolf RTW, et al. A 350 year drought reconstruction from Alpine tree ring stable isotopes. Global Biogeochem Cycl. 2010;24:GB2011. doi: 10.1029/2009GB003613
  • Leavitt SW, Yu L, Hughes MK, et al. A single-year δ13C chronology from Pinus tabulaeformis (Chinese Pine) tree rings at Huangling, China. Radiocarbon. 1995;37:605–610. doi: 10.1017/S0033822200031106
  • Wang W, Liu X, Shao X, et al. A 200 year temperature record from tree ring δ13C at the Qaidam Basin of the Tibetan Plateau after identifying the optimum method to correct for changing atmospheric CO2 and δ13C. J Geophys Res Biogeosci. 2011;116:G04022.
  • Konter O, Holzkämper S, Helle G, et al. Climate sensitivity and parameter coherency in annually resolved δ13C and δ18O from Pinus uncinata tree-ring data in the Spanish Pyrenees. Chem Geol. 2014;377:12–19. doi: 10.1016/j.chemgeo.2014.03.021
  • Treydte KS, Frank DC, Saurer M, et al. Impact of climate and CO2 on a millennium-long tree-ring carbon isotope record. Geochim Cosmochim Acta. 2009;73:4635–4647. doi: 10.1016/j.gca.2009.05.057
  • McCarroll D, Loader NJ. Stable isotopes in tree rings. Quat Sci Rev. 2004;23:771–801. doi: 10.1016/j.quascirev.2003.06.017
  • Sidorova OV, Siegwolf RTW, Saurer M, et al. Isotopic composition (δ13C, δ18O) in wood and cellulose of Siberian larch trees for early Medieval and recent periods. J Geophys Res Biogeosci. 2008;113:G02019. doi: 10.1029/2007JG000473
  • Borella S, Leuenberger M, Saurer M. Analysis of δ18O in tree rings: wood-cellulose comparison and method dependent sensitivity. J Geophys Res Atmos. 1999;104:19267–19273. doi: 10.1029/1999JD900298
  • Loader NJ, Robertson I, McCarroll D. Comparison of stable carbon isotope ratios in the whole wood, cellulose and lignin of oak tree-rings. Palaeogeogr Palaeoclimatol Palaeoecol. 2003;196:395–407. doi: 10.1016/S0031-0182(03)00466-8
  • Wilson AT, Grinsted MJ. 12C/13C in cellulose and lignin as palaeothermometers. Nature. 1977;265:133–135. doi: 10.1038/265133a0
  • Gori Y, Wehrens R, Greule M, et al. Carbon, hydrogen and oxygen stable isotope ratios of whole wood, cellulose and lignin methoxyl groups of Picea abies as climate proxies. Rapid Commun Mass Spectrom. 2013;27:265–275. doi: 10.1002/rcm.6446
  • Barbour MM, Andrews TJ, Farquhar GD. Correlations between oxygen isotope ratios of wood constituents of Quercus and Pinus samples from around the world. Aust J Plant Physiol. 2001;28:335–348.
  • Gray J, Thompson P. Climatic information from 18O/16O analysis of cellulose, lignin and whole wood from tree rings. Nature. 1977;270:708–709. doi: 10.1038/270708a0
  • Borella S, Leuenberger M, Saurer M, et al. Reducing uncertainties in δ13C analysis of tree rings: pooling, milling, and cellulose extraction. J Geophys Res Atmos. 1998;103:19519–19526. doi: 10.1029/98JD01169
  • Ferrio JP, Voltas J. Carbon and oxygen isotope ratios in wood constituents of Pinus halepensis as indicators of precipitation, temperature and vapour pressure deficit. Tellus B. 2005;57:164–173. doi: 10.1111/j.1600-0889.2005.00137.x
  • Tans PP, De Jong AFM, Mook WG. Chemical pretreatment and radial flow of 14C in tree rings. Nature. 1978;271:234–235. doi: 10.1038/271234a0
  • Harlow BA, Marshall JD, Robinson AP. A multi-species comparison of δ13C from whole wood, extractive-free wood and holocellulose. Tree Physiol. 2006;26:767–774. doi: 10.1093/treephys/26.6.767
  • Loader NJ, Robertson I, Barker AC, et al. An improved technique for the batch processing of small wholewood samples to α-cellulose. Chem Geol. 1997;136:313–317. doi: 10.1016/S0009-2541(96)00133-7
  • Green JW. Wood cellulose. New York: Academic Press; 1963.
  • Laumer W, Andreu L, Helle G, et al. A novel approach for the homogenization of cellulose to use micro-amounts for stable isotope analyses. Rapid Commun Mass Spectrom. 2009;23:1934–1940. doi: 10.1002/rcm.4105
  • Gärtner H, Nievergelt D. The core-microtome: a new tool for surface preparation on cores and time series analysis of varying cell parameters. Dendrochronologia. 2010;28:85–92. doi: 10.1016/j.dendro.2009.09.002
  • Riechelmann DFC, Maus M, Dindorf W, et al. Sensitivity of whole wood stable carbon and oxygen isotope values to milling procedures. Rapid Commun Mass Spectrom. 2014;28:1371–1375. doi: 10.1002/rcm.6912
  • Keeling CD. The Suess effect: 13carbon–14carbon interrelations. Environ Int. 1979;2:229–300. doi: 10.1016/0160-4120(79)90005-9
  • Saurer M, Spahni R, Frank DC, et al. Spatial variability and temporal trends in water-use efficiency of European forests. Global Change Biol. 2014;20:3700–3712. doi: 10.1111/gcb.12717
  • Leavitt SW. Tree-ring C–H–O isotope variability and sampling. Sci Total Environ. 2010;408:5244–5253. doi: 10.1016/j.scitotenv.2010.07.057
  • Helama S, Arppe L, Timonen M, et al. Age-related trends in subfossil tree-ring δ13C data. Chem Geol. 2015;416:28–35. doi: 10.1016/j.chemgeo.2015.10.019
  • Gessler A, Ferrio JP, Hommel R, et al. Stable isotopes in tree rings: towards a mechanistic understanding of isotope fractionation and mixing processes from the leaves to the wood. Tree Physiol. 2014;34:796–818. doi: 10.1093/treephys/tpu040

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.